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CONVERGENCE ACCELERATION OF CONTINUED FRACTIONS
OF POINCARE’'S TYPE

A. HAUTOT
Institute of Physics, University of Liége, Sart Tilman par B-4000 Liége 1, Belgium

This paper investigates the convergence properties of continued fractions of Poincaré’s type with the aid of
Pincherle’s theorem, extends the investigation to the case where a tail is added to the approximants, and
distinguishes between accelerative and decelerative tails. It shows that classical sequence transforms like 6 or
Levin/u algorithms accelerate the sequence of the approximants modified by the optimal accelerative tail. A
two-step procedure is deduced which performs the acceleration of the convergence of continued fractions of
Poincaré’s type.

1. Introduction and notations

Let us consider the following continued fraction (cf):
b b
Cf = 1 + _E _].. aea
a, + a, +
The associated recurrence is written as (@, =1)

It is well known that cf may be brought into the equivalent form

oy Qy
— =0 = . 1
d=ltT LT 4 &
and the associated recurrence becomes

—oZyt 2+ 2, =0. (2)

This result is obtained by means of the following substitutions:

k
Ck=zk/I_Ilaj and ak=bk/(akak+l)'
Jl=

We shall call cf, the kth approximant of cf: cf, =1,
S B il
1 +1 + 1 +
If the sequence cf, converges, then its limit is cf, =cf. The speed of the convergence is
accurately described by the parameter p defined via the relative error (cf # 0)

exp(—p) = |of, —cf | /]cf|.
If cf equals zero, we may consider the absolute error exp(—8) = |cf, —cf | = |cf |.

cf, =1+ O 5.

0168-9274 /88 /$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)



310 A. Hautot / Acceleration of continued fractions

2. Convergence property of continued fractions

Various monographs [1-4] dealing with cf present several convergence theorems valid for
special cases. However, the main theorem on that topic is an early one due to Pincherle [5]. Its
importance has been emphasized by Gautschi [6] in the context of the stable numerical
calculation of the various approximants cf,. We first proceed to show how the same theorem
allows one to estimate the speed of convergence of cf,.

2.1. Pincherle’s theorem

(i) The cf (1) is convergent if and only if recurrence (2) possesses two contrasted linearly
independent solutions X, and Y, (with X, dominating Y; as k increases and Y, # 0).
(i1) The exact value of cf is given by

cf=-Y_,/Y,.
(iii) The speed of the convergence is given by (Y_; # 0, i.e. cf #0)
exp(—p) = —|Y./Xc|/1Y_1| (with the choice X,=0and X_,=1).

If cf = 0, the absolute error is given by

exp(—8)=1Y,/X,|/|Y,| (with the choice X;=0and X_, =1).
In both cases the error is of the order of magnitude of the contrast factor, p, defined as

Px = Yo/ X

A good estimate of the error is obtained by replacing the exact solutions X, and Y, by their

asymptotes. The problem of the determination of the asymptotes of the solutions of a linear
recurrence has been studied theoretically by Birkhoff [7], Birkhoff and Trjitzinsky [8], Noérlund
[9], Culmer [10], and Turrittin [11]. They found that in the case of recurrences of Poincaré€’s type,
i.e. recurrences like (2), with «, written as

t.'!k"'k”’,r[ao+a1k_1’fr+azk-2’,r+ “‘], rEz+, VEZ,
which is only valid for large k, one has asymptotically,

Z, ~ kPMakk* (In k)" exp(A kY™ + X k™ + - oo 4N, kD™

X [1+ pk ™" + pyk™ " 4 -],

with m(integer) < ru with g equal to the multiplicity of the considered root z of the characteris-
tic equation.

Denef and Piessens [12] and Branders [13] have indicated how to calculate the parameters A,
a, w, s, \;, and p,. We [14] have published extended tables of those coefficients in the easiest
cases and will systematically refer to them in the following.

2.2. Asymptotic behaviour of the solutions of recurrences of Poincaré’s type 1

We shall investigate in detail the convergence properties of cf, in the important case of an
associated recurrence of Poincaré’s type 1. In that case the coefficients of the cf are rational, thus
we write for a large k,

ak=k”[a0+a,/k+a2/k2+ ], vyeELZ,
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and
-, 2,1+, +Z,_,=0.

The characteristic equation for k large is written as [13]
—a,k’z? +z+1=0.

Its roots are asymptotic to

12~ ik—”ﬂ/lffg if »>0,
212~ [1£(1+4a,)"?] /(2a,) it v=0,

Z1"‘- _1 and Z2"'k—y/a0 if}‘<0.

Thus three distinct regimes must be studied separately by using the procedure described in
[12,14]. The result of the complete discussion is presented in Table 1. Nine cases are dis-
tinguished, each exhibiting its own convergence behaviour. The results of the third column allow
one to predict the type of convergence (or divergence), i.e. monotone or oscillatory, according to
the sign of p, and the rate of convergence.

Numerical examples

We have retained six interesting types of continued fractions among those pfesentcd in Table
1. The case for » > 2 has been excluded because the cf is divergent, and further we do not
consider the case » <0 because the cf is so rapidly convergent that no acceleration algorithm is
superior to the simple forward calculation of the successive approximants:

o o

f=1+3 7,
(1) cfl: ay= — 4% —0.001/(k +1), o= (B) k.
(2) cf2: ap= —3+0.05/(k+1), pr ~ exp(—1.79Vk ).
(3)  cf3: a,=—1—0.009/(k+1)°, R
(4)  ofd: a,= —5Q2k+57/[(k+2)(k+3)], pc~1/Ink
(5)  cf5: a,=9(k+0.1), pr~ (—1)* exp(—3Vk).
(6)  cf6: a, =1.15(k+0.5)°, pe ~ (—1) kT,

All these sequences converge more or less slowly and the record of slowness is held by cf4.
After having performed some numerical experiments we report in Table 2 the following results:
the limit of the cf (obtained by a technique which will be explained further on), the accuracy p of
the 13th approximant cf,; (with cf, =1, ¢f, =1+ a, ...), and the best accuracy p obtainable
through three classical accelerative procedures: &, #, and Levin/u (where p is equal to the
number of significant Napierian figures which are exact in the answer). These examples show
that Brezinski’s #-algorithm and Levin’s u-transform seem to be the most efficient with a slight
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Table 2
Numerical tests performed on the approximants cf, =1,...,cf 3 of six test-cf: e, 6, and Levin/u. The number of
decimal figures is equal to p /2.3

cf Limit plcfys) p(el p(65”) p(ui?)
cfl 0.546179307131983 4.1 12.0 11.9 9.7
cf2 0.6822455410430423 6.0 10.2 14.4 131
cf3 0.469192286382208 23 3.5 15.8 10.9
cf4 0.375 (exact) 1.1 1.6 3.6 2.5
cfs 1.27992876522640 2.9 3.3 2.7 4.4
cf6 1.1508693968392 4.0 1.8 6.3 6.8

advantage for §. However, the acceleration is not particularly impressive even in the most
favourable case. As suspected the case of cf4 is especially slow.

2.3. The reasons of the relative failure of the classical acceleration procedures

We first recall the well-known algorithm which calculates the successive approximants of the
cf (1): one calculates the sequences N, and D, obeying the associated recurrence (2) with the
initial conditions:

N_,;=0, Ny=1 and D_;=1, D;=0. (3)
One has
cf,=N,/D, fork=1,2,....

Pincherle’s theorem allows the prediction of the asymptotic behaviour of the sequence cf,.
Indeed, because Y, = Y_,D, + Y;N,, one finds

1
of, = of = (Y/D)/Yo= (Y /Yo 7=y x 77

This shows that cf, — cf may in general be expressed in the nonlinear form

ka‘“Cf"1/()\181(;‘)"‘)\282“‘)"'"‘)» (4)

where g;, ,(k) is negligible relative to g,(k) as k increases.

The consequence is that the E-algorithm of Brezinski [15] and Havie [16] is not immediately
applicable to our case: moreover, expanding the right-hand side of (4) into the linear form
pyd,(k) + pad,(k) + - -+ is generally impossible without increasing the number of functions ¢
which will make the E-algorithm poorly efficient.

The fact that asymptotic behaviours like (4) do not belong to the kernels of €, #, and u entails
the relative inefficiency of these algorithms for the problem considered.
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For example, we have, for the six families investigated, and referring to the notations of Table
1

k
cfl, —cfl ~ 1/[2\ + (I—Jﬂ) k7@ ( Ao+ Xk~ + - )],

l1—0o

of2, — cf2 ~ 1/[ A + exp[8(ark) | (Ao + Ak T2+ Ak~ 4 - )],

cf3—cf3~1/[A+k"(Ng+ Mk + 1)),

cfd, —cfd~1/[Ag+poIn k+Ak " +pk ' Ink+ -],

of5, —cfs ~ 1/[A+ (= 1)* exp[2(k/ag) | (Ao + Mk V2 + Ak 2 + - )]-,

of6, — cf6 ~ 1/[ A+ (= 1) KV (Ag+ Ak T+ -4 )],
where A and A; are constant numbers.
Remark. In very special cases, these asymptotic behaviours may be rewritten as linear forms. For
example, if we suppose that 7 is a positive integer, we may write

T | (U, SR o T )

and expect the full efficiency of @ or Levin/u on the sequence cf3,.

An obvious numerical example is furnished by the cf:
Xp !
b 1 +1 + ?
with
a, = — (k+2)*/[(2k? + 6k + 5)(2k* + 10k + 13)].

That cf corresponds to the partial sums of the series S, =X_o1/(j+ 1)?, according to the
formula S, =1+ 1/(5¢cf, —1).
We have

a,~ — 5+ 1k *+ -+, klarge,
which corresponds to the case: 1 +4a,=0, a, =0, (1+ 16a,)!/? = v =1. We conclude that
of, —cf ~k Y po+pk™"+--+).

It can be verified that the #-algorithm accelerates cf, as efficiently as with the classical sequence
Sy
3. An acceleration procedure valid for cf of Poincaré’s type

This section is devoted to the determination of an alternative method for the acceleration of cf
of Poincaré’s type.
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3.1. Convergence of cf with a tail

So far we have considered standard approximants of the type
&y o O3

cfp=1+— — .-

2 1 +1 + + 1 +

We now consider the modified sequences

O 7, k=2,3,..., Cf1=1.

o o o _ oy
off =1+t X g k-3 =
1 + 1 + + 1 + ¢,

k=2,3,..., cff=1,

where ¢, _, is a sequence called the tail of the cf.

If the sequence cf, converges, it is immediately apparent that cf* will converge to the same
limit provided one chooses
Y1 X,

1 + 1 + '

A straightforward application of Pincherle’s theorem leads to the exact value of the tail which
makes cf * = cf for all values k:

b= —Y /Y.
We shall now try to elucidate how cf* behaves when the tail is arbitrarily chosen.

dp1=1+

Theorem 3.1. The approximants cf* are given by the following expression:
of = (Ne_a+ S 1Neo1)/(Dy_a + 01Dy y), k=2,3,..., cf* =1,

where the sequences N, and D, are defined as before (see (3)).
In particular, if ¢,_, =1, we recover the well-known formula cf, = N, /D,.

Proof. cf,* is obtained by repeated application of the associated recurrence (2) to N, and D, for
k=0,...,n—1. However, when k=n—2, a,_, must be replaced by «a,_,/¢,_,. More pre-
cisely, we may write

Nts=N,_s N ;=N,.3, N = (NX+N23) b1/ =N, _1$p-1s
DYa=D,.,, D =Dy, DY =(Dr 2+ D 3), 1/ =D, 19,
Hence
N*=(N. +N2) /a0 =(N,_y + N,_19,_1) /15
L =(Dr1+ D)/ 1= (Dyz + Ny_19,-1) /i1
and the result cf* = N* /D* proves the theorem. O

311
Let us look for the conditions under which cf* converges to the same limit cf as cf,. For that
purpose we consider the expression

off —cf= (Nk—2 + ‘Pk—LNk—})/(Dk—z + ¢k—1Dk—1) gt SO A
By taking into account the evident fact that ¥, = ¥,N, + Y_,D,, we find
cf —cf=(1/Yo) (Yoo + ¢p_1Ye1)/(Dpz+ $p_1Dx_1).
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Considering the dominant solution U, = D, — Y, the equation is rewritten as

N B Uy + o _1Ui
cf; -cf—(l/YD)[l/(1+ Yk_2+¢k_:],k_1‘]]
=(1/%)[1/Q +&,)],

where we have set §, = (U,_1/ Y, N Ui_2/ U1 + b4_1)/(Yi_2/Yi_1 + $1_,). The behaviour
of &, for k large depends on the sequence ¢,. A complete discussion is as follows.

Lemma 3.2. If U, dominates Y, then |U,_,/U, | < |Y,_1/Y,| for k large enough.

Proof. Ad absurdum. Suppose that
\U/U_y | <|Y/Y,y| forj>N.

Then for k sufficiently large we should have
k k
| U/ Uy | = J_llfl@/@q I <Jg|¥/¥“1 | = 1Y/ Yy_1l,
and it would be impossible that U, dominates Y,.
Note 3.3. |U,_,/U, | and |Y,_,/Y, | are not necessarily contrasted as k — oo.

3.L2
The consequences of the lemma are as follows:
) If |Y,_,/Y,| and |U,_,/U,| are contrasted, i.e. if

k]jf:o | Ue-1Y/ U Y1 | =0,

we distinguish among five cases:

] >

. .
[ U2/ Up-1 | | Ye—2/ Y1 |

(1) |¢_;| dominated by |U,_,/U,_, |: £, behaves like U, _,/Y, _,; cf* converges to cf like
Pi_ o, 1.e. slightly less fast than cf, .

(i) ¢y ~kU_1/U,_;: If k# —1, the conclusion of (i) remains valid. If k = — 1, we must
add supplementary notation by writing ¢, _, = — U, _,/U,_,(1 + n(k)). In that case £, behaves
like —(U_o/Y,_y)n(k). If U,_,/Y,_, dominates 1/n(k), then cf* converges to cf but the
process is decelerated by a factor n(k). If 1/q9(k) dominates U, _,/Y, _,, then cf* converges to
a limit cf * distinct of cf, namely cf* =cf +1/Y,. If U,_,/Y,_, ~ o/n(k), then cf* converges
to alimit cf* #cfif o # 1, 1e. cf*=cf+(1/Y,)/(1 + o), and diverges otherwise.

(iii) ¢ _, intermediate between U, _,/U, _, and Y, _,/Y, _: §, behaves like U, _;¢,_1/Y;_>,
ie. Uy /Y, , <&, <U,_1/Y,_, so that cf* converges to cf with a rate intermediate between
Pi—o and p,_,, i.e. hardly less fast than cf,.

(V) ¢, ~ kY, _»/Y._1: If k+ —1 one immediately sees that £, ~ (x/(1 +«k)U,_,/Y,_,, ie.
cf* converges to cf like p, ;. If k=—1, we set ¢,_; = —(Y,_o/Y,_1)(1 +e(k)), hence
§,=(U,_1/Y._1)/e(k). Because lim, _, _e(k) =0, we conclude that cf* converges to cf like
pr_1€(k). 1.e. the sequence is accelerated by a factor e(k).




A. Hautot / Acceleration of continued fractions 317

(v) ¢,_, dominates Y, _,/Y,_q: &, ~ U,_,/Y,_, and cf;* converges to cf like p;_;.
(2) A similar discussion holds if U,_,/U,_, and Y, _,/Y,_; are not contrasted.

3.1.3. Conclusions
We summarize the results in the following way. The two possibilities for a tail ¢, to modify
the speed of convergence of a convergent cf is that ¢, be of the same order of magnitude as

u,=U,_,/U, or y,=-Y, /Y.

— If u, and y, are contrasted, the convergence is

— decelerated by a factor n(k) if ¢, ~ u, (1 +n(k)),

— accelerated by a factor e(k) if ¢, ~ y, (1 +&(k)) (¢ and 7 # 0).
— If u, and y, are not contrasted so that one can write

& ~ u, (1 +n(k)) ~ y (1 +e(k))

(with e(k) and n(k)# 0 and contrasted), then the convergence is accelerated by a factor

e(k)/n(k) if 7 dominates e and is decelerated by the same factor otherwise.

When the deceleration is too fast the convergence may be dramatically altered leading to a
convergence to another limit or even to divergence.

In particular, if ¢, = —(AU,_; + uY,_1)/ (AU, + pY,), i.e. if ¢, is built as the exact ratio of
two successive terms of an arbitrarily chosen dominant solution of the associated recurrence, one
finds (A # p)

ofF — cf = (1/Y)A /(A —p).

If A=p, the sequence cf* does not exist. In other words, the choice ¢, = —D, /D, is
forbidden (where D, is defined by (3)).

3.2. Acceleration procedure for cf of Poincaré’s type

We have seen that the tail ¢, produces an acceleration in the convergence of the approximants
provided it is chosen in agreement with

b ~ —(Yeo1/ Vi) (1 +2(k)),

where &(k) decreases to zero as k increases.

If by chance we know the exact value of the dominated solution Y, then the approximants
will be exact: cf* =cf. In all other cases it may be sufficient to take for ¢, the asymptotic
behaviour of — Y, _,/Y,. That behaviour can be determined in a straightforward way in the case
of a cf of Poincaré’s type 1: we have presented in Table 1 the asymptotic expansions of the
dominated solution Y, which are valid in this case. For the sake of clarity let us detail the
example of the ultra slow cf corresponding to the parameter values

v=1+4a,=a,=1+16a,=0.
We see in Table 1 that Y, ~ (—2)Vk P(1/k). The optimal tail behaves thus like
¢~ 3(1 = 1/k)"*P(1/(k = 1))/P(1/k)
~Potpr/k+py /R
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The coefficients p, are determined by identification of the coefficients of the lowest powers of
1/k in the recurrence

1-¢p+ay/dp1=0,
with
g =—5— gk 2+aki+ .-,
We find in detail:
1= (po+pi/k+py/k*+ -+ )
+(—d-k/k*+ay/k>+ ) /(po+pi(k+1) T+ - ) =0.

In the first order we get pf —p,+ =0, i.e. po=3. In the second order: p, = — ;. In the
third order: p, = — §(1 —16a,), and so on.

This kind of calculation is most easily performed by using a computer algebra system like
REDUCE. We have reported in Table 3 the results of the complete calculations in the case of cf
with rational coefficients (i.e. Poincaré’s type 1).

Numerical Example 3.4. It is interesting to test the method on the super slow cf4 = 0.375, which
corresponds to a, = — &(2k + 5)2/((k + 2)(k + 3)).

We have asymptotically a, ~ — 5 — fsk >+ 5k > — gk *+ ---. Hence, ay= — 4, a,=0,
a,=— 1, a;=+5, a,= — 1¢,.... Looking at Table 3 we calculate the coefficients p, which
appear in

& =po+pi/k+py/KE+ -

We find p,= 1, p,= — %, P, =13, p;= — 1. If we consider the sequence cf*,...,cf}, built with
the aid of the tail ¢, =p, + - -+ +p,/k>, we find cf% = 0.374418 ( p = 6.4). The number of exact
figures has been multiplied by a factor of 6. But the important point is that the modified
sequence is strongly accelerated by both ¢ and Levin/u algorithms. Applying @ to cf*,...,cf}
leads to 6% (cf4*) = 0.375000000613 ( p = 20.2), whereas applying Levin/u gives u{)(cf4*)=
0.374999999405 ( p = 20.2).

It is an experimental fact that 6 and Levin/u accelerate the convergence of the sequence of
the approximants of a cf modified by the addition of an asymptotically optimal tail. We have
tested this new procedure on the six test cases of cf of Table 2 with a tail which is exact up to the
order k2 (included). The results are displayed in Table 4, where it is seen that the method works
efficiently and leads to an accuracy which is between four and twenty times the original accuracy
for the chosen examples. The efficiencies of both # and Levin/u are of equal order of magnitude,
whereas ¢ is less efficient except for the cases cf5 and cf6.

3.3. Examples of application in physics

The same procedure may be used to accelerate the convergence of generalized continued
fractions which are associated with n-term recurrence relations of Poincaré’s type coefficients. A
widely studied problem in physics is the calculation of the eigenvalues of Schrodinger’s equation
(SE) through the so-called Hill method. For example, the confinement potential ax? + bx* + cx®
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Table 4
The approximants cf,,...,cf;; have been modified by the introduction of an asymptotically correct tail (p,
+ -+ + pyk ), leading to cf*,...,cf4. The new sequences have been accelerated by e, 6, and Levin/u. The

Napierian precision is given in each case for cfy, cf;% and for the result of the transformation of the modified
sequence cf *

cf * plcfys) plefs) p(e) p(8) p(L/u)
cf1* 4.1 10.5 14.8 20.8 19.3
cf2* 6.0 136 175 23.6 224
cf3* 2.3 18.3 21.2 30.0 27.6
cfd* 1.1 6.4 8.7 20.2 20.2
cf5* 2.9 15.7 26.4 274 28.3
cf6* 40 15.3 25.9 26.7 276

(¢ > 0), has been extensively studied [17,18] in this context. The problem deals with the following
SE.:

Y+ (E—ax®—bx*—cx®)y =0,

with the limiting conditions ¢(+ o0) =0.
Trying the solution Y under the expanded form (even states)
oo
Y =exp(—Jax*+ 1Bx?) Y C.x?*,
k=0

where a=c'/?>0 and B= — 1bc™'/? we find that the C, obey the second-order recurrence
relation

(2k +1)2k +2)Cyyy + [E+ B4k + 1) C, + [B* —a — (4k — 1)a] C,_, =0,

with £k=0,1,2,... and C_, =0.
If b > 0, the eigenvalues are deduced as the roots of the associated cf.
The general solutions C, are easily found asymptotic to

C;,Z — (icl/d)kr(k)—l/zkw eXP(i %bc—3/4kl/’2),
and the contrast between C{" and C{* may be written as

o~ exp(—p) = (=1)" exp(—be™*k'2).

The convergence of the cf appears to be slow, especially when bc~3/*

accelerated by the procedure described in this paper.

<1. It may be

4. Conclusion

This paper has mainly dealt with cf with rational coefficients. The convergence conditions
have been emphasized and the rate of convergence has been given in each case. When the
convergence appeared to be slow, we have shown that no classical acceleration procedure seemed
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to be particularly efficient. This was caused by the rather special asymptotic behaviour of the
successive approximants.

We have discussed the effects of modifying the approximants by the introduction of an
appropriate tail. This idea is not entirely new. Jacobsen [19] refers to it in a recent paper which
contains a full bibliography on the topic. By reinvestigating it in the context of Pincherle’s
theorem, we have shown that the exact tailis ¢, = — Y, _,/Y,,and that ¢, = — Y, _, /Y, (1 + &(k))
is an accelerative tail provided that e decreases sufficiently rapidly as k increases. Because the
exact expression for Y, is generally not known we have suggested the replacement of Y,_,/7,
by its asymptotic behaviour. Various methods could certainly be used for that purpose: we have
presented an algebraic procedure which expands the tail in successive powers of 1/k or 1/vVk
depending on the case. It is particularly interesting to note that both # and Levin/u transforms
do accelerate the sequences of approximants modified in this way. The resulting two-step
procedure appears to furnish an acceptable method for the acceleration of slowly convergent cf.
This is clearly demonstrated by six numerical examples referred to as cfl, ..., cf6 in the text. The
example of the super slow cf4 is especially demonstrative. Our procedure strongly depends on the
possibility of determining an asymptotic expansion for the optimal tail of the cf. This is quite
straightforward if the coefficients of the cf are rational. It may also be shown that the procedure
remains valid if the coefficients of the cf are expandable under the form

ak“'kwfr(p0+p1k‘1fr+p2k_2fr+ "‘), VEZ, !‘EZ+,

corresponding to the so-called cf of Poincaré’s type r.

The reader is referred to our earlier paper [14], where extended tables are published which
describe the asymptotic behaviour of the dominated solution of the associated recurrence (2).
The optimal tail results once again from the formula ¢, = —Y,_,/7Y,.
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