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ABSTRACT

The eigenfunctions of the one dimensional Schrédinger equation ¥” + [E - V(x)]¥=0, where V(x)

is a polynomial, are represented by expansions of the form kE o Sk %k (w, x). The functions

¢k (@, x) are chosen in such a way that recurrence relations hold for the coefficients ¢y : examples

k

recurrence relations, one considers an infinite bandmatrix whose finite square sections permit to
solve approximately the original eigenproblem. It is then shown how a good choice of the par-
ameter w may reduce dramatically the complexity of the computations, by a theoretical study
of the relation holding between the error on an eigenvalue, the order of the matrix, and the value
of w. The paper contains tables with 10 significant figures of the 30 first eigenvalues correspond-

ing to V(x) = x2M m = 2(1)7, and the 6 first eigenvalues corresponding to V(x) = x2 + xx10and

x2 + ax12, 2= .01(.01).1(.1)1(1)10(10)100.

treated are Dy (w x) (Weber-Hermite functions), exp (- wxz) x%, exp (- cx9) Dy (wx). From these

1. INTRODUCTION

We first recall the form of the one-dimensional Schré-
dinger equation (SE) : ¥+ [E-V(x)] ¥ = 0 with
the limiting condition for the eigenstates :

¥ 12 dx < =. The aim of this paper is the calcula-

tion of the eigenvalues (ev) Ey; (N =0, 1,...) of the

energy parameter when the potential function V(x) is
of the type :

V(x)= x2M 4 Ax20 4 2P 4
(1<m<n<p<... integers)

Our method will be based on the use of the Hill deter-
minant as presented in a previous paper [1]. However
our principal goal here will be the optimalization of
the method. We shall try to solve the problem in a
simple and neat way. It is known that when X is small

the potential x>™ + Ax?™ can be treated as a x2™

potential sligthly perturbed by the x2" term. When A
is large the same potential can be assimilated to a x2n
potential sligthly perturbed by the x2™ term. That is
the reason why we shall first study the potential

V(x)= x2™, We shall see later that more complex

potentials of the type x2M 4 Ax2 4 ... can be treated
in a similar way.

2. THE HILL DETERMINANT METHOD AND THE
(k, w, 5) RELATION

The starting equation can be written as :

V"4 (E-x2™)¥=0 1)

We look for a solution of the type

‘Il=02 € Py (W, x)

where the parameter w is a priori arbitrary. Its essential

role will be precised later. Since V(x) = x2™ is an even
function of the variable x it is eventually possible to
deal separately with the odd and even eigenstates by
setting :

¥ = ;f) €} P (@, x) for the even states (2)

W= § )k Pok 41 (@ X) for the odd states
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The sole restriction on gy is : ¢y (- %) = (-1)X gy (x).
Since the distinction between even and odd states
brings non negligible simplifications in the calcula-
tions we shall use it as far as possible. Note that the
generality of the theory is not affected by that distinc-
tion.

Let us introduce the expansion (2) in equ. (1); one

finds :

2 o log @)+ (B-x") gy (@,x)]=0

If it is possible to express goé’k and x2m Yol by means
of a finite number of consecutive i functions then
by collecting the corresponding terms and by identi-
fying the whole expressions to zero one gets a finite
recurrence between the c; . It is always possible to re-

write that recurrence under the following canonical
form :

AY @B+ A Vw,B)e
+ ...+Al((o)(w,E) Ck—n+1=0 (3)

withcy =0ifk<Oandk=s,s+1,... (s> 0, fixed
integer).

In the cases where the recurrence (3) only regards the
even states, the other recurrence which corresponds
to the odd states can be deduced from it by simply

replacing k by k +1/2 in the coefficients of ¢ _ q.,c ...

It is possible to rewrite the set of recurrent relations

(3) under the form of an infinite linear homogeneous
system with the infinity of unknowns €g> €1+ The

determinant D of the infinite matrix of the system is
called the Hill determinant of the recurrence :

AP VeE AP-wE) L AP wE
AT em Al Ve ‘
D=
Afl‘;_)l(w,E)
0

All the elements are zero except those on the main
diagonal, on the (s +1) upper adjacent diagonals and
on the (n-s-1) lower adjacent diagonals. The ev Ey

(N=0,1,2,...) of equ. (1) are precisely the roots of D.
These ev may of course not depend on the value given
to w. Practically it is not necessary to consider all the
elements of D. Let us truncate D by only considering
its k first lines and columns : the k x k resulting deter-

minant D) i the kth approximant of D. With the
restriction that the procedure will converge we have :

Al DwE) A (wE) o

D= k].im k) 2nd in the same way the roots k)

. k
llmw E&)

More generally eéven when the sequence p(k) diverges

of D(k) tend to those of D : Ey=

we shall show in section 4 that the roots of D(K) ef-
fectively tend to the eigenvalues of equ. (1).

Finally we shall adopt the following technique for the
calculations : we intend to compute an ev E\ of equ. (1)

with a precision at least equal to ¢ P. We shall compute
the corresponding root Egc ) of the smallest approxi-

mant D(X) 5o that the consideration of a larger ap-
proximant would not affect the value just found in the
limits of the given precision. Let us precise the nota-
tions; we shall write :

-8

IEN - Eg() i =e (absolute error) (5)

IEN ~ Eg‘ ) | / I Eyn | =eP (relative error = precision)
6
We further have : 8 =p -In IENl é7;
When one tries to calculate numerically the roots Eg\lf)
with the aid of a given algorithm one remarks that the
order k of the approximant which leads to the ev looked
for with the precision e~P strongly depends on the
value of the parameter w. That dependence will be
called the (k, w, p) relation or equivalently because
of (7) the (k, w, §) relation. The interest for this rela-
tion is easily understood : if the value of w is correctly
chosen the calculation of the ev Ey; with a given preci-

sion will need the consideration of approximants ptk)
of minimal dimension and the computation time will
be reduced.

(4)

Agn)l("”E)

3. CALCULATION OF THE ev OF EQUATION (1)

We shall successively adopt three types of ¢} functions.
Each procedure will exhibit its own advantages.

3.1. First approach : v} (w,x) = D} (w,x)/T (k/2 +1)
The D are the classical Weber-Hermite functions [2].

They satisfy the following relations :
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D/ (u)= (u2/4 -n-1/2) D, (u) ing k by k +1/2 in the coefficients of (8). Recurrence
(8) contains (2m +1) terms connecting ¢f , 1,C> Sk _2m+1-

uD (=D 4(0)+nD _4(v) The coefficients are polynomials in k of degree m.
When m > 3 equ. (8) is rather complicated so that this
The last equation can be generalized as follows : approach becomes untractable. We have performed

1 various numerical tests in the case m=2 in order to
uD, (u) =a_1/2 D, _1+2] 12+ 1Dn-l+1 Faet al1/2Dn+1 estimate the (k, w, §) relation. Figure 1 exhibits the
(k, w) behaviour for the four first even states (N=0,2,4,6)

(1=1,2,...) in the case p =28 (about 12 correct figures for the ev).
) ) . We remark the decrease of k when w increases and the
where the aj are given by hypergeometric expressions limiting k__. ~ 12. In practice it is therefore evident
G=-1/2,-1/2+1,...,1/2) : that a sufficiently large w-value must be chosen in
T+l zljl - 1/? . Sl order that.k be next kopt‘ For exan.lple w = 2.5 should
3 “Tla+1+3-G)1/2- 511250 (-n+1jl-j, 15l be convenient. A too large w-value is not only un-
necessary but also prejudicial since in the recurrence
_1/2;2051 +1; 2) (8) w appears at the power 2m + 2 =6; it is evident
’ ’ that large coefficients in the recurrence could induce
These relations allow to find the recurrence satisfied loss of significant figures in the numerical calculations.
by the ¢} of equ. (2). After a little calculation one
finds (k=m-1,m,...ie. s=m-1): Remark : it might be tempting to expand ¥ in series of
5 5 9 the eigenfunctions of the harmonic oscillator x2 ie. for
[Ews™ _(emt (k+5/4—m)]ck the even states :
-n +1
+ @2 2 kom 1)e, V=2 o Dy (xv2)/k!
+ w2m+ 2/ (2k - 2m + 3) o ) That expansion corresponds to the choice w = V.
-m +

Figure (1) shows that this choice is not the best since
i ,g (2k-2j-2m +2)!(2m)!2 |J|_m(k—m+ 1)! the corresponding value of k is about three times kopt’
F-m (2k-j-ljl-2m +2) 1 (m=1jl) 112 ]! (k-j-m+1)!
3.2. Second approach
2q+2

Ck—j-—m+1 P (w, x) =exp [-x 1 /(29 +2)] Dy (w, x)/T(k/2+1)

=0 (8)
Recurrence (8) holds for even states only. The recur-
rence for odd states can be deduced by simply replac-

F(-2k+j+Ijl+2m-2,[jl-m;2]j|+ 1;2)

This approach is interesting only if m=2q+1 (q=1,2,...)
corresponding to the oscillators x°, x™*, ... Proceeding

as in section 3.1 one gets the following recurrence be-
tween the ¢y (even states) : k=q,q +1, ...

k4 2q  2q+2 2q+2

q_.,“9+% _ q+ _

[Ew ™™ -w (k+1/4-q)] ck_q+w 14k q)ck—q—l
755 2q+2
+ W /2(2k-2q +1) Ck-q+1

+q§1 (2k-2j-2q)!(2q +1)120" Ik —q)1
P28 IN-0ZL®) -q-1 (2k-2q-j-1jl)!(q-1jl+1)!12jl!(k-q-j)!

F(-2k

+2q+j+ il jl-q-1;21jl + 15 2) ¢ .=0
q+j+ 1l lji-q J ) _q-j o

Recurrence (9) contains (2q + 3) terms and its coef-
ficients are polynomials in k of degree q + 1. Let us
recall that in the first approach the number of terms
§ was (4q + 3) and the degree of the coefficients was
= > 2q + 1. It is seen that this approach is simpler but it
-Tr does not allow to deal with all the values of m. The
_ sole values of q which are practically tractable by this
0 VT 2 Gopt3 o method are the values q = 1 or 2. When q > 2 the
recurrence (9) is too complicated. We have performed
Fig. 1. several numerical investigations in the case q =1 (po-

25
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tential x6). The results are collected in figure 2 which
exhibits the main features of the (k, w, §) relation

for the four first even states. One observes a behaviour
quite similar to that of the first approach. Of course,
the value of k opt is modified.

kﬁ\
100+
p=28 (N=0246)

sk

sot
6
&
2
0

1 L i s L —
B 3 4 , 5 w
Fig. 2.
3.3. Third approach

(pk (w, x)=exp (—wxz) xk

In this approach the recurrence between the ¢y is
easily deduced in the form :

2
(2k+ 1)(2k+2)ck+1+ (E-2w-8wk) e +4w 1

- = k=0,1,2,... (even states

‘%k-m 0 ( ) (10)
For the odd states let us recall that k must be replaced
by k + 1/2. That recurrence is of order (m + 1) though
only four terms are different from zero. The structure
of the coefficients is quite simple which facilitates the
numerical calculations. We have studied numerically
the (k, w, §) relation in the case m=2. Figure 3
represents with solid lines the essential of the results
for eight even states (N =0, 4, 8, ..., 28) calculated at

the precision e 28, Figure 4 does the same for the sole
fundamental state at various precisions. One remarks
that the bearing of the curves is essentially different :
k presents a minimum, k opt? when w=w opt” There-
fore numerical investigations must be carried on with
a value of w in the neighbour of w . if one wishes to

t
optimalize the efficiency of the metﬁod. That feature
of the (k, w) curves is characteristic of that approach

for the x2™ potential. We have reported in table 1 the

experimental values of k. and w__ for the funda-

opt 4

mental state of the potentialsx
the precision ¢28 10712, 1f one considers the excited
states one remarks an increase in the values of k opt
and Wopts they also increase with 8. All the (k, w)

to x20 determined at

k§
24
125+ 20
(kol)-UBw
=078 16
12
00}
8
. 4
!
75 ! ’
{
\ 7
'\ /
50} \ 7
\ //
/
- - 28
. -
25 " eameneeneet
0 2 3 4 5 W
Fig. 3.
A
125}
ket 3 = 078
100
2
28
5L
23
8
sof
N=0 (p=18,23,28,32)
5+
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Fig. 4.
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curves fit in to each other. All the minima approxi-
matively lie on a same curve independent of E and of
8. We shall reexamine this point later. We have used
the values of w_ . contained in table 1 in order to

calculate the first 30 states (even and odd) for the
4, 14

oscillators x™ to x~ . They are reported in table 2.
Let us recall that the ev spectra are given by simple

formulas in two extreme cases :

Table 1. Experimental and theoretical values of k

and Wopt (p=28) opt
m kopt Yopt l‘{opt “opt kopt Wopt
(exp.) | (exp.) | (simpl. {(simpl. (refined |(refined
proc.) | proc.} |proc.) |proc.)
21 30 2.4 25 2.76{ 27 2.37
3] 53 6.0 56 5.29{ 50 5.83
4179 (112 | 85 | 104 77 |113
51109 19 112 184 { 108 |19.0
61143 29.5 138 29.9 | 143 1291
71179 42 163 45.0 | 182 |41.8
81219 57 188 64.1 | 226 |57.0
9 1262 74.5 212 87.4 { 273 1{75.0
10 | 310 95 236 115 | 324 }95.7
if m=1 then E\;=2N +1 and if m = « then
Ey =72 (N+ 1)%/4.
Remark : whenm=2onehasw__ . =2.4if§=28

opt
(fundamental state). It is interesti.rfg to point out
the work of Biswas et alii [3] on the same oscillators :
they systematically choose w = 0.5 without suspecting
the role played by the factor w. The result was that
they had to deal with approximants of large order
k ~ 140 about six times k opt* The phenomenon was

increased when m = 3, 4, ... since in these_cases w opt
is very different from 0.5. The numerical results they
obtained were fragmentary and it is not surprising they
renounced to complete them because the time of

calculation was excessive.

4. THEORETICAL STUDY OF THE (k, w, §) RELA-
TION

Section 3 has shown several possible (k, w) behaviours
which are to be interpreted. The interest of the theory
is evident since it would allow to predict the values of
k opt and w opt in practical cases. In order to attain this
aim it is necessary to estimate the error committed
when truncating the infinite determinant D to the

value D) of jes kth approximant. A theorem has been

presented elsewhere [1] which allow to calculate
recursively the various approximants D(k). Let us
recall its statement : if one constructs (s + 1) sequences

Nl(cj) (j=1,...,s +1) satisfying the recurrence (3) with
the following initialization (k < s) :
Nl((‘]) = 6k,j—1 (=1if k = j-1, otherwise = 0)

One has the following identity :

AP A 0
K ©
pl*) = Aﬁx—)l Ainzz
© 7(0) (n-s-1)
0 +s5-1"" +:—1
1 1
N L nErD
RN A, )

. 1 .s 1
Y, e

(11)

Whatever large be k, the kxk determinant plk)

(s+1) x (s+1) determinant which order is fixed. Its (s +1
elements can be calculated recursively through (3).
Recurrence (3) (without the conditions ¢ =0 if k < 0)

isequaltoa
)2

has n independent solutions which are noted c]({{1 )
(1=0,1,...,n-1). Let us make the assumption (al-
ways verified in the practical cases that are in view)
that it is possible to order these n solutions so that the
(s +1) first dominate the (n-s-1) others i.e. :

lim cg')/c]((l)=0 with 0<l<s<l"<n-1
k- =
We call subdominant solution any linear combination

(s+1) (n-1)
Ofck ,-..,Ck

, and dominant solution any non

subdominant linear combination of cl((o) peees cf{n -1),

The subdominant solutions of the recurrence have been
numerically studied by Gautschi [4] (in the case n = 2,

s = 0) and Oliver [5]. We shall see that the coefficients
¢} present in equ. (2) precisely correspond to a sub-
dominant solution of (3). Let us note py the ratio of
that form which tends the least fast to zero : p_appears
as the quotient of the largest subdominant solution to
the smallest dominant solution. It is easy to prove that
the errors resulting of the replacement of D by its ap-

proximant D(k_) behave like py : to see it we first
express the Nl(:J) in function of the cl(cl ).

NOBES UG

k ~ i=0 i9] ck J= 1,~-.,s +1
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If we ignore the (n-s-1) last terms in the summation
we neglect the subdominant solutions and the error is
of the order of p.. Introducing these simplified expres-
sions in equ. (11) we get :

(1) (s+1)
Ny Ny
.(1) £s+1)
Nets o Nias
(1) (s+1)
k% 311 31,s+1
. . . . "
- . 0
A1) s+ a +0lP)
k+s ™" "k+s s+1,1 777 Ts+1,5+1

where 0(p ) means “tends to zero in the same way as
Pi when k > =", One has :

211 4 41 |

as+1,1"' as+1,s+1

_ plk)

ke lerDple) ) D)
(1) (s+1)
“%k+s 0 %k+s

The roots EN of D thus coincide with the roots of

11 3,s+1

354110 as+1,s+1

This determinant is generally an analytic function of
E, and has therefore isolated zeros in the complex
plane. If E is such a zero, and only then, a linear com-
(1) (s+1)
kKt

et Y41 N k
which is a subdominant solution of (3). Consequently,
for these values of E only, the Schrédinger equation
has a solution whose expansion (2) is built with a sub-
dominant solution of (3). In order to be sure that the
original eigenvalue problem has been solved, one must
show that these expansions only correspond to square
integrable functions. The way to achieve this depends
on the choice of the functions ¢ (w, x). For instance,
from the orthogonality relations of the Weber-Hermite
functions,

¥(x)= kE:O ¢ Dy (wx)/(k!) is square integrable if

bination ¢} = 7 N exists

and only if

S )P dx = kc’zbo(\/ﬂ/w)(Zk)!Icklzl(k!)2 <.
As another example, it will be shown in section 4.3
that, if ¢|_is a subdominant solution of (10),

Y(x)= kEO R x2k exp (-wxz) behaves like

m+1

lxl—m/2 exp [-]x| /(m+1)] when x is a large real

(positive or negative) number, whereas any dominant

solution of (10) gives birth to a function behaving like

-m/f2

| x| exp[lx|™* 1/ m+1)] in the same conditions.
p

gc) (k) .,

If we note E; "/ the roots of the approximant D e
k

have IE%\I) - EN‘ =0(py) if E is of multiplicity one.

On account of equ. (5) it is possible to rewrite this rela-

tion in the following way :

|Eg() —EN|= |g(E~N)‘| |pk| e

The function g (E) is unknown and in fact it seems
rather impossible to specify its form through theoretical
deductions. In practice we can only hope that g(E)=0(1)
so that we should have with a good approximation :

8 =-Inlp| or equivalently on account of equ. (7) (12)

p=-Inlp i+ In|Eyl (13)

Equ. (12) is precisely the (k, w, 8) relation that we lock
for since py_ depends on w and k. It plays an essential
role since it allows to predict the order k of the smallest
approximant to be considered if one wishes to calculate
the ev to a given accuracy. It also allows to predict ap-
proximately the values of k . and w_ .. The procedure
pt opt
can be summarized as follows : one starts with the recur-
rence brought into the form (3). One calculates the
asymptotic behaviour of the n independent solutions

{0

dominate the (n-s-1) others. One writes p_as the

. One verifies that (s + 1) solutions

ratio of the largest subdominant solution to the smallest
dominant one. Equ. (12) furnishes the desired (k, w, 8)
relation. In order to determine the asymptotic behaviour
of the solutions one has the choice between two dif-
ferent methods which we shall successively use in order
to be able of comparing their respective advantages.

4.1. Theoretical study of the (k,w, 8) relation in the
case where W is expanded in terms of Weber-
Hermite functions

Here we try to recover theoretically the numerical
results of section 3.1. The recurrence is given by (8).
For the sake of simplicity we only deal with the case
m = 2. One has :
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(16k2-4)c, 1 +[32k%-(24+ O)kc+ (4+ wO/2)]e
+ [24k% + (8 -36)k + (15- 3084 -Ew)]e
+ [8k2- (18 + w®/4)k + (10 + w04 e,

+ (k2-3k+2)cp_5=0 (14)
k=1,2,...,0.e s=1).

Here we shall use the technique of Denef and Piessens
[6). The recurrence is of order 4; let us make the
hypothesis that when k is large ¢} is of the type :

o ~ X KV exp @k 1 gy iy L)
In order to be sure that the assumption is valid we

introduce that expression in the recurrence (14)
previously divided by c; . We then obtain expressions

that can be developed in powers of /4, Collecting
the corresponding terms and equating to zéro the
coefficients of the highest powers of k we obtain the
relation - that fixes the values of a, w, a, 8,7, ... The
resultis (1= 0,1,2, 3) :

[ _§w3/z JAT(21+1)/4 ,,13/4

cl((l) ~(-1/2) exp
24
It is immediately seen that solutions cfco) and cf)
dominate cl((l) and cl((z) . On the other side the sub-
dominant solutions only verify the condition

(2k)

e—iﬂ(2l+1)/4(2k)1/4 b ]k—3/8

% Ickl2 (2k)!/k 12 < « and thus alone correspond to

a square integrable eigenfunction of the SE(1) provided
there exists a non trivial linear combination of these
that vanishes when k < 0. It is easy to calculate :

|Pk| = Icg)/cio) ‘ ~exp[- \/E—g— Q3/2 (21()3/4
4 Y2 (912 114
24

from which we deduce the theoretical (k, w, §) rela-
tion :

5~V2 _g_wsjz (2k)>/4 _ _\gwm 2kt

When 8 = 28 the corresponding (k, w) curve is repre-
sented with dashed lines on figure 1. When w increases
k decreases, passes through a minimum kopt = 9\/_6_8/64,

Wopt = (488/ N3 )1/6 and increases in accordance

with the numerical data. However a discrepancy arises
when k becomes too small due to the fact that at

low k it is impossible to ensure the validity of the

asymptotic expressions for c(l)
: k .

{1 + 1

4.2. Theoretical study of the (k, w, §) relation in the
case where V¥ is expanded as a Taylor series.

Here we try to explain the numerical results related in
section 3.3. We shall deal with the general case of the
oscillator x2M, We start with recurrence (10) (even
states). We look for the asymptotic behaviour of the
¢y by two different ways.

4.2.1. Simplified procedure

We use again the technique of Denef and Piessens.
Let us first put :

The recurrence for the dk can be written as :

(m+1)(2k+1)d 4 + (E_Zw_SMk)(mz_-t:l)(l-m)/(m+1)
1-m
+m

2L s ] di

+4w2(

2k )(3—m)/(m+1)[

-1
=3 1+0k "+ } dk—l

-(Zk-m+1)/(m +1) dk-m= 0

(15)
Where use has been made of the well-known identity:

b

z

2P (z+a)/T (z+b)~ 1+ (a-b)(a+b-1)/(22) +...

Proceeding as in section 4.1 it is easy to establish that
1=0,1,2,....,m):

4 (2iml/(m +1)

e 2m +2 exp wefZinI/(m+1)
k| e )2/(m+D)

(16)

(2k)
202 4Tl (m+1) 5 (3-m)/(m +1)
m+1

It is easily seen that c}(o) dominates the other solutions.

We have :
_ (1), (0) o 2T _1y2k 2/(m+1)
o= 1M1 exP[w(cosm+1 )(2k)

- _2_<£ (cos Az _ 1)(2k)(3—m)/(m+1)]
m+1 m+1

We deduce the (k, w, §) relation :
§ = 2w sin? —T_ (2k)2/(m+1)
m+1 ’

(3-m)/(m+1)

2
Awm 2 2m

(2k) (17)

m+1 m+1

The corresponding (k, w) curve has been plotted in
dotted lines on figure 3 in the case (m = 2, § = 28).
The coordinates of the minimum are easily deduced
from (17) :
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Wopt = ) cosec2 [(m +1) tg /(166)]
_ 2 7
kopt—sa cotg” ——- [ (m+1)
When § = 28 the numerical values of k opt and w opt

are reported in table 1 in the column “simplified
procedure”. The agreement with the experimental
values is good especially when m is small.

4.2.2. Refined procedure

We now turn to another more subtle approach. Let
us first recall the expansion guessed for the solution
of equ. (1) :

(even states)

. 2
‘P:Z ° e WX x2k

The ck may be evaluated in the complex plane via
Cauchy s theorem :

-2k-1,4

$y e % i) x (18)

k21

On another side the independent solutions

(0 _(m)
k %%k

¢ = 0if k < 0) are given by such integrals calculated

» % (7, 8.

Let us suppose that £ does not approach too much

the origin; it is then possible to replace ¥ by its

asymptotic behaviour for large x :

m+1

of (3) (without the restrictions

on distincts contours Lg»eer

\P“x—mlzexp[:x /(m+1)]

If we introduce that ¥ in equ. (18) we can evaluate

the integral with the aid of the saddle point method [9].

f

§ exp [f(x)]dxlﬁ V- —-—(—2}-(1)— exp f (x*)

with £ (x*) =
One has : f(x) »

Hence neglecting the factor [-27 / £7(x )}1/ 2

easily finds :

(1) 2

= exp[wxl + xin+1/(m+1-) -(2k+1+m/2)In xl]

(1=0,1,...,m) (19)
where x| are the saddle points of f i.e. the roots of :
20 %)+ xin—(2k+1+m/2)/xl=0 (20)

It is assumed that only x| and -x lie on £; [recall that
¥ (x) is odd or even so that x| and -x contribute for
the same quantity in (19)].

Equ. (20) implies that :

x2mt2 ok 14 m/2 - 2wx3)2 = 0

where xp is the root located in the sector

2/(m+1)

8= R[f(xo

wx?+ x™*Y(m 11)(2k +1 +m/2)In x

1r21‘1 21+1
2m + 2 2m +

This assumption is justified by the fact that for w not

<argxy<m (1-01 m).

too large one has  lim , arg xl=il——- and that
w-0 m+1

+ x;n 1 2k > 0 because of (20).

From another side following Sibuya [10] each solution
g

of the SE(1) behaves like

x| ™ exp(- Xy o like |x] ™ Zexp(®
m+ 1 m+1

lm+1

)

when x - « in the direction arg x = 71/ (m +1) : how-
ever the second behaviour only corresponds to (19).
Now if the coefficients cj given by (18) behave like a
subdominant solution of the recurrence (3) that means
that xy and X are not saddle points of ewx Y(x)x -2k-1
The conclusion is that

x|™ +1
TP T

W is a square integrable solution of the SE(1).
The ratio kal is easily calculated as equal to Icl(‘l) /cl({o) I
Combining with equ. (12), (19) and (20) one finds :

W (x)] = |x| ™2

) when x — ¢ = ie.

8= wm——R(x -x )+(2k+l +m/2)1nlx Ix4]

(21)
Let us expand x and x; in terms of powers of w by

starting with equ. (20); the two leading terms of the
expansions introduced in (21) restitute result (17).
However it is possible to determine exactly k
provided (19) is valid in the region k ~ k

culation is performed as follows : one has

0?‘he cal-

-f (x4)] with the conditions
f'(x0)= f'(xl) =0

When w varies k passes through a minimum if

dk/dw =0 ie.if

of (x f(x
R[ (xg)  3flxy)
W W

:l = 0 which leads to R xg = in.

The root xj is real > 0 but x is complex. We put :
x% = x(z) (1 + itg 0). If we introduce these expressions
in equ. (20) with

+ x(r)n= xom and ixr{l == xlin‘ one obtains

m+1 m+1
-Xq —Rx1
Hence the equation for 0 :
v m+1
m+1 __ 2 T 27
cos == 0 = - cos 0, w1 <9<Eg

(22)
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Combining with (20) and (21) one finds :

kopt= ~8/Incoso-m/4-1/2

+1
xg = (2K gy

(23)
+m/2 + 1)(1-cotgotg MtL m+1 o)

2k +mj2+1)t "™/ (m+1)

Dopt'“Kopt

mzlo(l cotgotg ——

=- —21—— cotgo tg
(24)
0 easily deduces through (22) and k opt 218 W

with (23) and (24). We have calculated the values of
k opt and w__. and we have reported them in table 1
in the column “refined procedure”. One notes the
remarkable agreement with the experimental numerical
data. On another side the (k, w) curve corresponding

to the fundamental state with & = 28 has been plotted

in dashed lines on figure 3. One sees that the theoretical

curve behaves like the experimental one provided
w <5,

5. APPLICATION TO THE x2 + Ax2™ OSCILLATORS

It is possible to deal with the anharmonic oscillators

x2 + Ax2m exactly in the same way. If one calculates

Wopt
with X so that it is possible to perform the numerical
calculations by adopting the values of w__ . which are

deduced from (22), (23) and (24). Tables 3 and 4 give
the six first states (even and odd) of the oscillators

x2 + Ax10 and x2 + Ax12 for A varying between
0.01 and 100. To the best of our knowledge these
quantities are calculated for the first time. That is also
the first time that a method is presented that makes
the access to the ev of an equation like (1) rather
simple.

6. CONCLUSIONS

We now summarize the results. Wishing to calculate the
ev of the SE(1) we have exhibited the central role
played by the factor w which enters in the expansion
tried for ¥ :

‘Il=(2)} x cpk(w,x)

We have successively used an expansion in terms of
Weber-Hermite functions and a Taylor expansion. At
first sight the first choice seems preferable because of
the orthogonality of W-H functions with the following
consequences :

- the evaluation of the norm, of matrix elements,...
is simplified

- if the oscillator x% + Ax2™ is treated in a perturbative

m + 1, (1-m)/(m+1)
2

¢ follows

in that case one finds that w__. varies very slowly

way the present method allows to calculate all the
terms of the perturbative series with all the desired
precision. Let us recall indeed that the functions
Dy (x0/2 ) are the eigenfunctions of the harmonic

x2 oscillator.

That approach is also interesting since it needs the
calculation of approximants of peculiarly low order k.
Unfortunately the recurrence (8) is rather complicated
and for m > 3 it is hardly usable.

On the.other side the calculation of the coefficients
¢y of the eigenfunction is simpler in the approach

with Taylor expansions. Let us now turn to that ap-
proach which finally appears as the most advantageous.
When one expands ¥ in the form

2

wx k
Zc
o k”

V=

it is important to assign to w a numerical value next
; otherwise k will be needlessly large. The theory

of section 4 has learned us how to predict the (k,w, 6)
curves. If the agreement is not perfect that is of course
due to the fact that the method is approximative in
various aspects :

a) Inequ. (12) In|g(E)] is neglected beside In|py [.
b) In the calculation of the integral giving cl((l) by the

saddle point method we neglect the factor
[-2m/£” (x*)]—ll2 beside the exponential.

c) In the same integral ¥ is replaced by its asymptotic
behaviour.

Approximations a) and b) have for consequence that
the theory predicts k systematically displaced with
respect to the real value. The fact is visible on figure 3.
Approximation a) also has for consequence that the
prediction is mostly valuable at low E. When E in-
creases (excited states) the discrepancy grows.
Approximation a) is interesting to be discussed be-
cause it entails that in the calculations k _, and w opt
are only present in the combination

{1-m)/(m+1)

+ m/2+1) whatever E

Wopt (Zkopt
and § are. The fact is visible in equ. (24).
In the special case m = 2 equ. (24) is written as :

(koo + 172 Wopt = 0780507
The corresponding (k, w) curve has been plotted in
heavy lines on figures 3 and 4. We note that it sensibly
coincides with the locus of the minima of the (k,w)
curves when E and & vary. However the coincidence
may not be perfect because equ. (24) is not rigorous :
that can be seen by pursuing the calculations to higher
orders in the frame of the simplified procedure of sec-
tion 4.2.1. It is found at the third order that w opt and
become present under various forms incom-

opt

ot

patible with (24). One could hope to improve the pre-
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diction for the excited states by taking into account
the contributions of the third, fourth, ... order which
are influenced by E. The calculation is perfectly pos-

sible but unfortunately the series for cg ) is found to

be divergent though it is of course asymptoticaly con-
vergent. As shown in'section 4.2.1 it happens that the
series limited to its two first terms gives the essential
of the results attainable through that procedure.

If one wishes to refine the prediction of the (k,w, §)
relation for the excited states it is necessary to return
to the refined procedure of section 4.2.2 and to in-
troduce the energy parameter E in the calculations.
To attain that goal it is necessary to start with an
asymptotic expansion for ¥ which is more accurate
than the one we have considered (which was in-
dependent of E).

REFERENCES

1. HAUTOT, A. et POSSOZ, L. : “Sur une méthode de réso-

lution approchée de I’équation de Schrédinger”, Bull. Soc.

Roy. Sc. Liége, To appear in 46 (1977), 249-309.

2. ABRAMOVITZ, M. and STEGUN, L. A. : Handbook of
mathematical functions, Dover, NY (1965).

10.

BISWAS, S.N,; DATTA, K.; SAXENA, R. P;
SRIVASTAVA, P. K. and VARMA, V. S. : “Eigenvalues

of )\xzm anharmonic oscillators”, J. Math. Phys. 14
(1973), 1190-95.

GAUTSCHI,'W. : “Computational aspects of three-term
recurrence relations”, Siam Review 9 (1967), 24-82,

OLIVER, J. : “The numerical solution of linear recur-
rence relation”, Numer. Math. 11 (1968), 349-360.

DENEF, J. and PIESSENS, R. : “The asymptotic
behaviour of solutions of difference equations of Poin-
caré’s type”, Bull. Soc. Math. Belgique XXVI (1974),
133-146.

MILNE-THOMSON, L. M. : The calculus of finite dif-
ferences, Macmillan, London (1933).

MAGNUS, A. : “Applications des récurrences au calcul
d’une classe d’intégrales”, Séminaires de mathématique
appliquée et mécanique, rapport no 71 (1974), Université
Catholique de Louvain.

DE BRUIJN, N. G. : Asymptotic methods in analysis,
North Holland, Amsterdam (1958).

SIBUYA, Y. : Global theory of a second order linear
ordinary differential equation with a polynomial
coefficient, North-Holland, Amsterdam (1975).

Journal of Computational a.ﬁd Applied Mathematics, volume 5, no 1, 1979. 15



