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A B S T R A C T  

The eigenfunctions of the one dimensional Schr6dinger equation q/" + [E V(x)]a/=0, where V(x) 

is a polynomial, are represented by expansions of the form k~ Ck ~°k (6o x). The functions 
0 

Ck (6o, x) are chosen in such a way that recurrence relations hold for the coefficients c k • examples 

treated are D k (6o x) (Weber-Hermite functions), exp (- cox 2) x k, exp (- cxq) D k (6ox). From these 

recurrence relations, one considers an infinite bandmatrix whose finite square sections permit to 
solve approximately the original eigenproblem. It is then shown how a good choice of the par- 
ameter 6o may reduce dramatically the complexity of the computations, by a theoretical study 
of the relation holding between the error on an eigenvalue, the order of the matrix, and the value 
of 6o. The paper contains tables with 10 significant figures of the 30 first eigenvalues correspond- 

ing to V(x) -- x 2m, m -- 2(1)7, and the 6 first eigenvalues corresponding to V(x) = x 2 + Xx 10 and 
x 2 + Lx 12 , ~= .01( .01) .1( .1)1(1)10(10)100.  

1. INTRODUCTION 

We first recall the form of  the one-dimensional Schr6- 
dinger equation (SE) : g ' " +  [E-V(x)] ~ = 0 with 
the limiting condition for the eigenstates : 

f I ~ 12 dx < oo. The aim of  this paper is the calcula- 

tion of  the eigenvalues (ev) E N (N = 0, 1 .. . .  ) of the 

energy parameter when the potential function V(x) is 
of  the type : 

V(x) = x 2m + Xx 2n +/~x2P + ... 

(1 ~ m < n < p < ... integers) 

Our method will be based on the use of the Hill deter- 
minant as presented in a previous paper [1]. However 
our principal goal here will be the optimallzation of 
the method. We shall try to solve the problem in a 
simple and neat way. It is known that when X is small 

the potential x 2m + Lx 2n can be treated as a x 2m 

potential sligthly perturbed by the x 2n term. When 

is large the same potential can be assimilated to a x 2n 
potential sligthly perturbed by the x 2m term. That is 
the reason why we shall f'trst study the potential 

V (x) = x 2m. We shall see later that  more complex 

potentials of the type x 2m + ~x 2n + ... can be treated 
in a similar way. 

2. THE HILL DETERMINANT METHOD AND THE 
(k, 6o, ~) RELATION 

The starting equation can be written as : 

@" + (E - x 2m) @ = 0 (1) 

We look for a solution of the type 

= ~  c k~0 k(6o,x) 

where the parameter 6o is a priori arbitrary. Its essential 

role will be precised later. Since V(x) = x 2m is an even 
function of the variable x it is eventually possible to 
deal separately with the odd and even eigenstates by 
setting : 

= ~ c k ~02k (6o, x) for the even states (2) 
o 

q¢ = ~ Ck ~°2k + 1 (6o' x) for the odd states 

(*) A. H a u t o t ,  Un ive r s i ty  o f  Liege, In s t i t u t e  o f  Physics ,  Sart  T i lman  4 0 0 0 , L i e g e  1, Belg ium.  
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The sole restriction on ~k is : ¢k (- x) = (- 1)k ~0k(X)" 

Since the distinction between even and odd states 
brings non negligible simplifications in the calcula- 
tions we shall use it as far as possible. Note that the 
generality of the theory is not affected by that distinc- 
tion. 
Let us introduce the expansion (2) in equ. (1); one 
f inds  

c k [~O~k (60, x) + (E - x 2m) ¢2k (60, x)] = 0 
0 

If it is possible to express ~02" k and x 2m ~O2k by means 

of a finite number of consecutive ¢2j functions then 

by collecting the corresponding terms and by identi- 
fying the whole expressions to zero one gets a fmite 
recurrence between the c k. It is always possible to re- 
write that recurrence under the following canonical 
form : 

A(k n) (60' El Ck + 1 + A(kn-1)(60'E) Ck 

+ ... + A(k0) (60, E) Ck_n+ 1 = 0 (3) 

with c k = 0 if k < 0 and k = s, s + 1 .... (s ~ 0, fixed 
integer). 
In the cases where the recurrence (3) only regards the 
even states, the other recurrence which corresponds 
to the odd states can be deduced from it by simply 
replacing k by k + 1/2 in the coefficients of c k + l 'Ck"" 

It is possible to rewrite the set of recurrent relations 
(3) under the form o f  an infinite linear homogeneous 
system with the inf'mity of unknowns c 0, c I . . . .  The 
determinant D of the infinite matrix of the system is 
called the Hilldeterminant of the recurrence : 

D = lim D(k) and in the same way the roots E (k) 
k --~ ,~ 

o l D  (k) tend to those of D : E N= lim E(N k). 
k--*~ 

More generally dven when the sequence D(k) diverges 

we shall show in section 4 that the roo t so f  D(k) ef- 
fectively tend to the eigenvalues of  equ. (1). 
Finally we shall adopt the following technique for the 
calculations : we intend to compute an ev E N of equ. (1) 

with a precision at least equal to e -p. We shall compute 

the corresponding root E~)  of the smallest approxi- 

mant D (k) so that the consideration of  a larger ap- 
proximant would not affect the value just found in the 
limits of  the given precision. Let us precise the nota- 
tions; we shall write : 

(absolute error) (5) 

(relative error = precision) 
(6) 

We further h a v e  = p - I n  IEN[ (7 )  
g I 

When one tries to calculate numerically the roots E~)  
with the aid of  a given algorithm one remarks that the 
order k of  the approximant which leads to the ev looked 
for with the precision e-P strongly depends on the 
value of  the parameter 60. That dependence will be 
called the (k, 60, p) relation or equivalently because 
of (7) the (k, 60, 6) relation. The interest for this rela- 
tion is easily understood : if the value of 60 is correctly 
chosen the calculation of the ev E N with a given preci- 

sion will need the consideration of approximants D (k) 
of  minimal dimension and the computation time will 
be reduced. 

D= 

A~n-s.-1)(60,E) A~n- s)(60,E) 

A (0) /60,E~ 
n - l ~  / "'" 

0 

. . .  A(~n)(60,E) 
4n2 c , ) 

A(nn)1(60,E) 

(4 )  

All the elements are zero except those on the main 
diagonal, on the (s + 1) upper adjacent diagonals and 
on the ( n - s -  1) lower adjacent diagonals. The ev E N 

(N = 0, 1, 2 . . . .  ) of equ. (1)fare precisely the roots of  D. 
These ev may of course not depend on the value given 
to 60. Practically it is not necessary to consider all the 
elements of  D. Let us truncate D by only considering 
its k first lines and columns : the k x k resulting deter- 

minant D (k) is the k th approximant of  D. With the 
restriction that the procedure will converge we have : 

3. CALCULATION OF THE ev OF EQUATION (1) 

We shall successively adopt three types of  ~o k functions. 

Each procedure will exhibit its own advantages. 

3.1. First approach : ~k (60,x) = Dk(60,x ) / F  (k/2 + 1) 

The D n are the classical Weber-Hermite functions [2]. 

They satisfy the following relations : 
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D n (u) = (u2/4 - n -  1/2) Dn(U ) 

uD n(u)=D n+l(u) + nD n_l(u) 

The last equation can be generalized as follows : 

ulD n (u) = a l / 2  D n -  1 + a-1/2 + 1 D n - l + l + " "  + al/2Dn+l 

( 1 = 1 , 2  . . . .  ) 

where the aj are given by hypergeometric expressions 

(j = - 1 / 2 , - 1 / 2  + 1 . . . . .  1/2) : 

F ( n + l )  1! 2 I j l - 1 /2  
F ( - n +  IJl-j, ljl 

aj F (n+ l+ j - [ j [ J (1 /2 - [ j [ ) !  12j[! 

-1 /2;  21j[ +1 ;2)  

These relations allow to find the recurrence satisfied 
by the c k of  equ. (2). After a little calculation one 
finds (k=  m -  l, m . . . .  i.e. s = m - 1 ) :  

[E co2m - co2m + 2 (k + 5 /4  - m ) ] C k - n  +1 

+ c o 2 m + 2 / 4 ( k _ m  + l ) c k _ m  

+ c ° 2 m + 2 / 2 ( 2 k - 2 m + 3 ) C k - m + 2  

m ( 2 k _ 2 j _ 2 m  + 2 ) ! ( 2 m ) ! 2 l j l - m ( k _ m +  1) ! 

~=-m ( 2 k - j - I j  I - 2 m  + 2 ) l ( m  - I j l ) l l 2 j  I! ( k - j - m +  1)! 

F ( - 2 k + j +  Ijl+ 2 m - 2 , i j l - m ; 2  Ijl+ 1 ; 2 ) C k _ j _ m +  1 

=0  (8) 

Recurrence (8) holds for even states only. The recur- 
rence for odd states can be deduced by  simply replac- 

SO 
\ 

25 

Fig. 1. 

7S 

p=28 (N= 0,2,~,6) 

\\\ 

\x,\\ 

~ ~ ~ ~ .r._ ~,~ ~ 

I 2 ~Oopt 3 {~ 

ing k by k + 1/2 in the coefficients of  (8). Recurrence 
(8) contains (2m + 1) terms connecting c k + 1' Ck ..... Ck-2m+ 1" 
The coefficients are polynomials in k of  degree m. 
When m > 3 equ. (8) is rather complicated so that this 
approach becofnes untractable. We have performed 
various numerical tests in the case m = 2 in order to 
estimate the (k, co, 6) relation. Figure 1 exhibits the 
(k, co) behaviour for the four first even states (N=0,2,4,6) 
in the case p = 28 (about 12 correct figures for the ev). 
We remark the decrease of  k when co increases and the 
limiting kop t ~ 12. In practice it is therefore evident 

that a sufficiently large co-value must be chosen in 
order that k be next k _ For example co = 2.5 should Op[" 
be convenient. A too large co-value is not only un- 
necessary but also prejudicial since in the recurrence 
(8) co appears at the power 2m + 2 =6; it is evident 
that large coefficients in the recurrence could induce 
loss of  significant figures in the numerical calculations. 

R e m a r k  : it might be tempting to expand ~ in series of  
the eigenfunctions of  the harmonic oscillator x 2 i.e. for 
the even states : 

~ = ~  c k D2k 

That expansion corresponds to the choice co = x/2. 
Figure (1) shows that this choice is not the best since 
the corresponding value of  k is about three times kop t. 

3.2. Second approach 

~0 k (co, x) = exp [ -x2q+2/ (2q  + 2)] D k (co, x ) / P ( k / 2 + l )  

This approach is interesting only if m =2q+ 1 (q=1,2,...) 

corresponding to the oscillators x 6, x 10 ....  Proceeding 
as in section 3.1 one gets the following recurrence be- 
tween the c k (even states) : k = q, q + 1 .... 

co2q+2/4(k-q)ck q 1 [E co2q _ co2q + 2(k + 1/4 - q)] c k _ q + _ _ 

+ co 2q + 2/2 (2k-  2q + 1) c k_  q + 1 

+ q ~ l  (2k_2j_2q)!(2q + 1)!21Jl-q(k_q)!j F(-2k 

- q - 1  (2k-2q- j - i j l ) ! (q - [ j [+ l ) !  12jl ! (k-q-j)!  

+ 2 q + j +  Iji, l j l - q - 1 ; 2  Ij[ + 1; 2) Ck_q_ j = 0 

(9) 

Recurrence (9) contains (2q + 3) terms and its coef- 
ficients are polynomials in k of  degree q + 1. Let us 
recaU that in the ~rst approach the number of terms 
was (4q + 3) and the degree of  the coefficients was 
2q + 1. It is seen that this approach is simpler but it 
does not allow to deal with all the values of  m. The 
sole values of  q which are practically tractable by this 
method are the  values q = 1 or 2. When q > 2 the 
recurrence (9) is too complicated. We have performed 
several numerical investigations in the case q = 1 (po- 
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tential x6). The results are collected in figure 2 which 
exhibits the main features of  the (k, 60, ~) relation 
for the four first even states. One observes a behaviour 
quite similar to that o£ the first approach. Of  course, 
the value of  kop t is modified. 

k 

100 

50 

I I I I 
25 2 3 /, 5 

Fig. 2. 

p= 28 (N=02,L,6) 

0 

k ~  

125 

100 

75 

50 

'25 

3.3. Third approach 

~0 k (co, x) = exp (-cox 2) x k 0 I 

Fig. 3. 
In this approach the recurrence between the c k is 

easily deduced in the form : t I 

(2k+ 1) (2k+ 2)Ck+ 1 + (E-2co-8cok) c k + 4co2Ck_ 1 12s , ,  

- Ck_ m = 0 k =0,1,2,.. .  (even states) (10) 

For the odd states let us recall that k must be replaced 
by k + 1/2. That recurrence is o f  order (m + 1) though 100 
only four terms are different from zero. The structure 
of  the coefficients is quite simple which facilitates the 
numerical calculations. We have studied numerically 
the (k, co, 8) relation in the case m=2. Figure 3 
represents with solid lines the essential of  the results 7s 
for eight even states (N = 0, 4, 8 ..... 28) calculated at 

the precision e -28. Figure 4 does the same for the sole 
fundamental state at various precisi0ns. One remarks 
that the bearing of  the curves is essentially different : 
k presents a minimum, kopt, when co = coopt" There- so 

fore numerical investigations must be carried on with 
a value of  60 in the neighbour of  coo-t if one wishes to 

optimalize the efficiency of  the method. That feature 
of  the (k, co) curves is characteristic of  that approach 2s 

for the x 2m potential. We have reported in table i the 
experimental values of  k _ and co _ for the funda- 

opt 4 opt 
mental state o£ the potentials x to x 20 determined at 

the precision e -28 - 10 -12. If  one considers the excited 
states one remarks an increase in the values o£ kop t 0 

and coopt; they also increase with 8. All the (k, co) 

1 

Fig. 4. 

4 5 6 (~ 

(k*l)-1/30.) = 0.78 

28 

23 

18 

N=0 (p = 18,23,28,32} 

I I I I I ~._ 

2 3 4 5 6 W 
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curves fit in to each other. All the minima approxi- 
matively lie on a same curve independent of  E and of 
6. We shall reexamine this point later. We have used 
the values of coopt contained in table i in order to 

calculate the first 30 states (even and odd) for the 

oscillators x 4 to x 14. They are reported in table 2. 
Let us recall that the ev spectra are given by simple 
formulas in two extreme cases : 

Table 1. Experimental and theoretical values of  kop t 
and coopt (P = 28) 

m kop t COop t kopt i coopt kopt coopt 

(exp.) (exp.) (simpl. (simpl. (refined (refined 
proc.) proc.) proc.) proc.) 

2 30 2.4 25 2.76 27 2.37 

3 53 6.0 56 5.29 50 5.83 

4 79 11.2 85 10.4 77 11.3 

5 109 19 112 18.4 108 19.0 

6 143 29.5 138 29.9 143 29.1 

7 179 42 163 45.0 182 41.8 

8 219 57 188 64.1 226 57.0 

9 262 74.5 212 87.4 273 75.0 

10 310 95 236 115 324 95.7 

if m = 1 then E N = 2N + 1 and if m = o~ then 

E N = rr 2 (N + 1)2/4. 

Remark : when m = 2 one has coopt = 2.4 i f  6 = 28 

(fundamental state). It is interesting to point out 
the work of  Biswas et alii [3] on the same oscillators : 
they systematically choose co = 0.5 without suspecting 
the role played by the factor co. The result was that 
they had to deal with approximants of  large order 
k ~ 140 about six times kop.t. The phenomenon was 
increased when m = 3, 4 . . . .  since in these.cases co opt 
is very different from 0.5. The numerical results they 
obtained were fragmentary and it is not surprising they 
renounced to complete them because the time of 
calculation was excessive. 

4. THEORETICAL STUDY OF THE (k, 60, 6) RELA- 
TION 

Section 3 has shown several possible (k, co) behaviours 
which are to be interpreted. The interest of  the theory 
is evident since it would allow to predict the values of 
kop t and coopt in practical cases. In order to attain this 

aim it is necessary to estimate the error committed 
when truncating the inFmite determinant D to the 

value D(k) of its k th approximant. A theorem has been 

presented elsewhere [1] which allow to calculate 
recursively the various approximants D(k). Let us 
recall its statement : if  one constructs (s + 1) sequences 

N~ ) ' :  (j = 1, . . . ,  s + 1) satisfying the recurrence (3) with 

the following initializati°n (k < s) : 

Nk 0) = 6k, j -1  (--1 i l k  = j - l ,  otherwise = 0) 

One has the following identity : 

D (k) = 

0 

A(n0)l 

0 • 1 "'" ~ + s - 1  

= (_l)k ( s+ 1)A~n) A( n ) A! n) 
s + l " "  k + s - 1  

N (1) ... N(k s+ l )  

(11) 

Whatever large be k, the kxk  determinant D (k) is equal to a 

(s+l) x (s+ 1) determinant which order is fixed. Its (s+l) 2 
elements can be calculated recursively through (3). 
Recurrence (3) (without the conditions Ck=0 if k < 0) 

has n independent solutions which are noted c (1) 

(1 = 0, 1, . . . ,  n -  1). Let us make the assumption (al- 
.EL 

ways verified in the practical cases that are in view) 
that it is possible to order these n solutions so that the 
(s + 1) first dominate the ( n - s - l )  others i.e. : 

lim c(l~/c (1) 0 with 0 g l < s < l ' g n - 1  
k~o~  k k = 

We cal] subdominant solution any linear combination 

c~S-- + 1) . . . . .  c~n-- - 1), and dominant solution any non of 

subdominant linear combination of  c(kO) (n - 1) 
~ . . . .  ~ C k 

The subdominant solutions of the recurrence have been 
numerically studied by Gautschi [4] (in the case n = 2, 
s = 0) and OLiver [5]. We shall see that the coefficients 
c k present in equ. (2) precisely correspond to a sub- 
dominant solution of  (3). Let us note Pk the ratio of 
that form which tends the hast  fast to zero : Pk appears 
as the quotient of the largest subdominant solution to 
the smallest dominant solution. It is easy to prove that 
the errors resulting of  the replacement of  D by its ap- 

proximant D (k),.. behave like Pk : to see it we first 

express the N~ ) in function of the c~0:" 

= ~ a i . c  j = l  . . . . .  s + l  
i=0 ,J 
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If we ignore the ( n - s -  1) last terms in the summation 
we neglect the subdominant solutions and the error is 
of  the order of Pk" Introducing these simplified expres- 
sions in equ. (11) we get : 

N(k 1) ... N(kS+l) 

N(s + 1) 
N(:+)s "'" k + s  

Icil) (s+l) 
I k + s " "  Ck+s 

a1,1 

ias+l ,1  

• •" a.l,s+ 1 

• (1 
• [+O(Ok)) 

• " as + l , s  +1[ 

where 0(:Pk) means "tends to zero in the same way as 
Pk when k -* oo". One has : 

l al,1 "'" al ,  s + l  

as +1,1"'" a s + l , s + l  

D(k) 
=kli~ n .  (_l)k(s+l)A~n) A(n)_ 

"'" s+k-1 

c (1) 
k+s 

... c(k s + l )  

(s + 1) 
• .. Ck+ s 

The roots E N of  D thus coincide with the roots of  

al ,  1 ... al ,  s+ 1 

as +1,1"'" a s + l , s + l  

This determinant is generally an analytic function of  
E, and has therefore isolated zeros in the complex 
plane. If E is such a zero, and only then, a linear com- 

bination c k = + . . .  + + 1 + 1 )  e x i s t s  

which is a subdominant solution of  (3). Consequently, 
for these values of  E only, the SchrSdinger equation 
has a solution whose expansion (2) is built with a sub- 
dominant solution of  (3). In order to be sure that the 
original eigenvalue problem has been solved, one must 
show that these expansions only correspond to square 
integrable functions• The way to achieve this depends 
on the choice of the functions Ok(co' x). For instance, 
from the orthogonality relations of  the Weber-Hermite 
functions, 

(x) = k =~0 ck D2k(co x) / (k !) is square integrable if 

and only if 

f f  ]~(x)l 2 dx = ~ (x/2rr--/co)(2k)!lckl2/(k!) 2 < - .  
- •  k = 0  

As another example, it will be shown in section 4.3 
that, if c k is a subdominant solution of  (!0), 

~ ( x )  = k~0  ck x2k exp(-cox2) behaves like 

Ix I -m/2 exp [-  Ix I m+ 1/(m+ 1)] when x is a large real 

(positive or negative) number, whereas any dominant 

solution of (10) gives birth to a function behaving like 

I x[ - m/2 exp [ Ix[ TM + 1/(m + 1) ] in the same conditions. 

If we note E~.)rl, the roots of  the approximant D (k) we 

have E(k)N - EN [ = 0 (Pk) if E N is of  multiplicity one. 

On account o f  equ. (5) it is possible to rewrite this rela- 
tion in the following way • 

E (k) N - E N I =  Ig(EN)[ [%1 =e -8 

The function g (E) is unknown and in fact it seems 
rather impossible to specify its form through theoretical 
deductions• In practice we can only hope that g(E)= 0(1) 
so that we should have with a good approximation : 

8 = -lnlPkl or equivalently on account ofequ.  (7) (12) 

p = -lnlPki + In IENI (13) 

Equ. (12) is precisely the (k, co, 8) relation that we look 
for since Pk depends on co and k. It plays an essential 
role since it allows to predict the order k of  the smallest 
approximant to be considered if one wishes to calculate 
the ev to a given accuracy. It also allows to predict ap- 
proximately the values of k . and coopt" The procedure opt 
can be summarized as follows : one starts with the recur- 
rence brought into the form (3). One calculates the 
asymptotic behaviour of the n independent solutions 

c~ °)'^ ,. . . ,  c~ n - l -  ). One verifies that (s + 1) solutions 

dominate the (n - s -  1) others. One writes Pk as the 
ratio of the largest subdominant solution to the smallest 
dominant one. Equ. (12) furnishes the desired (k, co, 8) 
relation. In order to determine the asymptotic behaviour 
of  the solutions one has the choice between two dif- 
ferent methods which we shall successively use in order 
to be able of  comparing their respective advantages. 

4.1. Theoretical study of the (k,co, 5) relation in the 
case where • is expanded in terms of  Weber- 
Hermite functions 

Here we t ry  to recover theoretically the numerical 
results of  section 3.1• The recurrence is given by (8). 
For the sake of  simplicity we only deal with the case 
m = 2. One has : 
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(16k 2 - 4)c k + 1 + [32k2-  (24 + co6)k + (4 + o06/2)]c k 

+ [24k 2 + (CO6-36)k + (15 -3co6 /4 -Eco4) ]Ck_  1 

+ [8k 2 - (18 + 0o6/4)k + (10 + 6o6/4)]Ck_ 2 

+ (k 2 - 3 k  + 2)c k _ 3  = 0 

(k= 1, 2 . . . . .  i .e .  s = l ) .  

(14) 

Here we shall use the technique of Denef and Piessens 
[6]. The recurrence is of order 4; let us make the 
hypothesis that when k is large c k is of  the type : 

c k - a k k w exp (ak 3/4 + 3k 2/4 + 7 k  1/4 + . . .)  

In order to be sure that the assumption is valid we 
introduce that expression in the recurrence (14) 
previously divided by c k. We then obtain expressions 

that can be developed in powers of  k -1/4. Collecting 
the corresponding terms and equating to zero the 
coefficients of  the highest powers of  k we obtain the 
relation that fixes the values of a, w, a, 3, ~/ . . . .  The 
result is (1 = 0, 1, 2, 3) : 

, 2 3 /2ei~r(21+l) /4  C(k 1) ~ (- 1/2) k exp t -~0o (2k) 3/4 

co 9/2 - i n  (21+ 1)/4(2k)1/4 ] k -3 /8  
- 2 - - ~ -  e + ... 

It is immediately seen that solutions c~O) and c~ 3) 

dominate C(k 1) and c~ 2). On the other side the sub- 

dominant  solutions only verify the condition 

12 ~0lck (2k) ! /k !2  < ** and thus alone correspond to 

a square integrable eigenfunction of  the SE(1) provided 
there exists a non trivial linear combination of  these 
that vanishes when k < 0. It is easy to calculate : 

[pk ] = [c~ 1)/c~O) ! ~ exp [- X/2- 2 _  60312 (2k)3/4 
3 

+ V ~  ¢o9/2(2k)114 ] 
24 

from which we deduce the theoretical (k, CO, 8) rela- 
tion : 

2 ¢o3/2 (2k)3/4 v S -  _ 3 _ _ _ _  

4.2. Theoretical study of the (k, 60, 6) relation in the 
case where ko is expanded as a Taylor series. 

Here we try to explain the numerical results related in 
section 3.3. We shall deal with the general case of the 
oscillator x 2m. ~Ve start with recurrence (10) (even 
states). We look for the asymptotic behaviour of  the 
c k by two different ways. 

4.2.1. Simplified procedure 

x/2 co9/2 (2k)1 /4  
24 

When 8 = 28 the corresponding (k, co) curve is repre- 

We use again the technique of  Denef and Piessens. 
Let us first put : 

Ck= d k / P  [1 + 2k / (m + 1)] 

The recurrence for the d k can be written as : 

(m + 1)(2k + 1)d k + 1 + (E - 2CO - 8COk)(m--~l)(1-m)/(m+-" 
1) 

I ] 1 - m (2k)-1 + dk 
• ..  l+y +m . . -  

C 2k ~ ( 3 - m ) / ( m + l ) [  ] 
+ 4CO 2 ,-~-~-,  1 + Ok -1 + ... dk -1  

- ( 2 k - m + l ) / ( m  +1)  d k _ m  = 0 (15) 

Where use has been made of the well-known identity : 

z b -  ap  (z + a ) /P  (z + b) - 1+ ( a - b ) ( a +  b-1) / (2z)  + ... 

Proceeding as in section 4.1 it is easy to establish that 
( 1 = 0 , 1 , 2  . . . . .  m ) :  

d(kl) = Ie2iM/(m 2 2 ] k k2 +2L(m+x)E/(m+X)A exp [coe-2iM/(m+l)(2k) 2/(m+1) 

-4iTrl/(m + 1) (2k)(3 - m ) / ( m  + 1) ] - 2co----2 e + ... 
m + l  

(16) 

that c(L O) dominates the other solutions. It is easi ly  seen 
We have : 

c(1)/c(O) [ 2~r 1) IOk I=1 k ' k I ~ e x p  co(cos -1)(2k)  2 / (m+ 
m + l  

- m  26°----22+1 (cos m+14----g--~ - 1)(2k)(3 m ) / ( m  +1)] 

sented with dashed lines on figure 1. When 60 increases We deduce the (k, 60, ~) relation : 
k decreases, passes through a minimum kop t = 9Vr6-8/64, 
COop t = (488/x /~)1/6  and increases in accordance 8 = 260 sin2 m+llr (2k)2/(m +1) 

with the numerical data. However a discrepancy arises 
when k ~ becomes too smali due to the fact that  at 
low k it is impossible to ensure the validity of  the 

asymptotic expressions for c(~ ) . ' "  

4co2 sin2 2~r (2k)(3 - m ) / ( m  +1) (17) 
m + l  m + l  

The corresponding (k, 60) curve has been plotted in 
dotted l ineson figure 3 in the case (m = 2, 8 = 28). 
The coordinates of the minimum are easily deduced 
from (17) : 
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rr 2/(m+l) 
u [ (m+l )  tg 2 ~-~-i-/(16~)] coopt = ~ c°sec2 

kop t = 86 cotg 2 m--~/~" (m + 1) 

When 5 = 28 the numerical values of  ko_ t and coopt 
are reported in table i in the column snnplified 
procedure". The agreement with the experimental 
values is good especially when m is small. 

4.2.2. Refined procedure 

We now turn to another more subtle approach. Let 
us first recall the expansion guessed for the solution 
ofequ.  (1) : 

= ~ Ck e-cox 2 2k x (even states) 

The c k may be evaluated in the complex plane via 
Cauchy's theorem : 

1 eWX 2 - 2 k -  1 
Ck - 2izr §£ ~(x)  x dx (18) 

On another side the independent solutions 

c ) , . . . ,  c ) of  (3) (without the restrictions 

c k = 0 if k < 0) are given by such integrals calculated 

on distincts contours ~0 .... ,9. m [7, 8]. 

Let us suppose that £1 does not approach too much 
the origin; it is then possible to replace 9 by its 
asymptotic behaviour for large x : 

~- x -m/2  exp [+- x m + l / ( m +  1)] 

If we introduce that • in equ. (18) we can evaluate 
the integral with the aid of  the saddle point method [9]. 

§ exp [f (x)]dx ~ x~- 21r f " (x*) exp f(x*) 

with f ' ( x* )  = 0 

One has : f (x) ~. cox 2 _+ x m + l / (m  + 1)- (2k +1 + m/2)ln x 

Hence neglecting the factor [ -2r r / f" (x*)]  1/2 one 
easily Finds : 

C(k 1) ~ exp [cox~ + x ?  + 1/(m+ 1) - (2k  + 1 +m/2)ln Xl] 

(I = 0 ,  1 . . . . .  m )  (19)  

where x I are the saddle points o f  fi.e. the roots of  : 

2co x I-+ x ? -  (2k + l + m / 2 ) / X l =  0 (20) 

It is assumed that only x 1 and -x  1 lie on ~'1 [recall that 
• (x) is odd or even so that x 1 and -x  1 contribute for 
the same quantity in (19)]. 
Equ. (20) implies that : 

2m + 2 ~)2 
x 1 - (2k + 1 + m/2 - 2cox = 0 

where x 1 is the root located in the sector 

lr 2 1 - 1  < a r g x l < r  r 2 1 + 1  ( I = 0 , 1 ,  m). 
2 m +  2 2 m +  2 ....  

This assumption is justified by the fact that for co not 

zrl and that too large one has coW, m0, arg x 1 - m + 1 

m + l  
-+ x 1 - 2k > 0 because o f  (20). 

From another side following Sibuya [10] each solution 
of  the SE(1) behaves like 

Ix[ m + l  i -m/2  Ixl m + l  
Ix l -m/2  exp( m + l  - ) or like Ix e x p ( ' ~ - ~ T -  ) 

when x -~ ® in the direction arg x = rrl/(m +1) : how- 
ever the second behaviour only corresponds to (19). 
Now if the coefficients c k given by (18) behave like a 
subdominant solution of  the recurrence (3) that means 

that x 0 and - x  0 are not saddle points of  e c°x2 @(x)x -2k-1  

The conclusion is that 

Ixl m + l  
1°2(x) l ~ Ixl -m/2  exp ( - - )  when x -, -+ ~ Le. 

m + l  
is a square integrable solution of  the SE(1). 

The ratio IPkl isleasily calcuhted as equal to I c(1)/c(0)l 
k k " 

Combining with equ. (12), (19) and (20) one f'mds : 

5 = c o  m - 1  R 2 2 
m + l  (x0 - X l )  + (2k+ 1 '+m/2)ln IXl/X0l 

(21) 
Let us expand x 0 and x I in terms of  powers of  60 by 

starting with equ. (20); the two leading terms of  the 
expansions introduced in (21) restitute result (17). 
However it is possible to determine exactly k 

provided ( t  9) is valid in the region k ~ kop t. ° ~ e  cal- 

culation is performed as follows : one has 

= R[ f (x0)  - f (x l )  ] with the conditions 

f '  (x 0) = f" (x 1) = 0 

When co varies k passes through a minimum ff 
dk/dco = 0 i.e. if 

I 3f(x0) 3co 3 f3(-~1) ] R - -  = 0 which leads to R x,,2 = Rx.2 

The root x 0 is real > 0 but x I is complex. We put : 
2 2 

x I = x 0 (1 + i tg o). If  we introduce these expressions 

in equ. (20) with 

+ m m + X l = - X  1 oneobtains  - x 0 = x 0 and m 

m + l  m + l  
- x  0 = R x 1 

Hence the equation for o : 
m + l  

_ ~  2 7t .< 0 <  cos o = - c o s  o, m + l  
27/ 

m + l  

(22) 
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Combining with (20) and (21) one finds : 

kop t = - f /In cos o - m/4 - 1/2 (23) 

m + l  
x 0 = (2k0p t +m/2  + 1)(1-cotgotg m + l  0)-1 --y-  

COopt(2kopt + m/2 + 1) (1 - m)/(m + 1) 

_ 1 cotgotg m + l o ( 1 - c o t g o t g  m + l o )  (1-m)/(m+l) 
2 2 

(24) 

o easily deduces through (22) and kop t and COopt follows 
with (23) and (24). We have calculated the values of 
kop t and COopt and we have reported them in table 1 

in the column "refined procedure". One notes the 
remarkable agreement with the experimental numerical 
data. On another side the (k, CO) curve corresponding 
to the fundamental state with 8 = 28 has been plotted 
in dashed lines on figure 3. One sees that the theoretical 
curve behaves like the experimental one provided 
CO<5. 

5. APPLICATION TO THE x 2 + Xx 2m OSCILLATORS 

It is possible to deal with the anharmonic oscillators 

x 2 + )~x 2m exactly in the same way. If one calculates 
coopt in that case one finds that coopt varies very slowly 

with )~ so that it is possible to perform the numerical 
calculations by adopting the values of COop t which are 

deduced from (22), (23) and (24). Tables 3 and 4 give 
the six first states (even and odd) of the oscillators 

x 2 + )kx 10 and x 2 + Xx 12 for )~ varying between 
0.01 and 100. To the best of our knowledge these 
quantities are calculated for the first time. That is also 
the first time that a method is presented that makes 
the access to the ev of an equation like (1) rather 
simple. 

6. CONCLUSIONS 

We now summarize the results. Wishing to calculate the 
ev of the SE(1) we have exhibited the central role 
played by the factor co which enters in the expansion 
tried for a / :  

~I' = ~ c k ~k (CO, x) 

Wehave successively used an expansion in terms of 
Weber-Hermite functions and a Taylor expansion. At 
first sight the first choice seems preferable because of 
the orthogonality of W-H functions with the following 
consequences : 

- the evaluation of the norm, of matrix elements .... 
is simplified 

- if the oscillator x 2 + Xx 2m is treated in a perturbative 

way the present method allows to calculate all the 
terms of the perturbative series with all the desired 
precision. Let us recall indeed that the functions 
D k (xx/2) are the eigenfunctions of the harmonic 

x 2 oscillator. 

That approach is also interesting since it needs the 
calculation of approximants of peculiarly low order k. 
Unfortunately the recurrence (8) is rather complicated 
and for m > 3 it is hardly usable. 
On the other side thecalculation of the coefficients 
c k of the eigenfunction is simpler in the approach 
with Taylor expansions. Let us now turn to that ap- 
proach which finally appears as the most advantageous. 
When one expands xp in the form 

_-e-COx2 ~ c k x k 
0 

it is important to assign to co a numerical value next 
COop t otherwise k will be needlessly large. The theory 

of section 4 has learned us how to predict the (k,CO, 8) 
curves. If the agreement is not perfect that is of course 
due to the fact that the method is approximative in 
various aspects : 

a) In equ. (12) lnlg(E) l is neglected beside lnlPki. 

b) In the calculation of the integral giving C(k I) by the 

saddle point method we neglect the factor 

[ -2 r r / f "  (x*)] -1/2 beside the exponential. 

c i In the same integral xp is replaced by its asymptotic 
behaviour. 

Approximations a) and b) have for consequence that 
the theory predicts k systematically displaced with 
respect to the real value. The fact is visible on figure 3. 
Approximation a) also has for consequence that the 
prediction is mostly valuable at low E. When E in- 
creases (excited states) the discrepancy grows. 
Approximation a) is interesting to be discussed be- 
cause it entails that in the calculations kop t and COop t 
are only present in the combination 

1)(1 - m)/(m + 1) whatever E (2kopt coopt + m/2 + 

and ~ are. The fact is visible in equ. (24). 
In the special case m = 2 equ. (24) is written as : 

1)-i /3 (kop t + COop t = 0,780507 

The corresponding (k, co) curve has been plotted in 
heavy lines on figures 3 and 4. We note that it sensibly 
coincides with the locus of He minima of the (k,CO) 
curves when E and ~ vary. However the coincidence 
may not be perfect because equ. (24) is not rigorous : 
that can be seen by pursuing the calculations to higher 
orders in the frame of the simplified procedure of sec- 
tion 4.2.1. It. is found at the third order that COopt and 
kop t become present under various forms incom- 
patible with (24). One could hope to improve the pre- 
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diction for the excited states by taking into account 
the contributions o f  the third, fourth . . . .  order which 
are influenced by E. The calculation is perfectly pos- 

sible but unfortunately the series for c~" ) is found to 
1 

be divergent though it is of course asymptoticaly con- 
vergent. As shown in'section 4.2.1 it happens that the 
series limited to its two first terms gives the essential 
of  the results attainable through that procedure. 
I f  one wishes to re£me the prediction of  the (k,~o, 8) 
relation for the excited states it is necessary to return 
to the refined procedure of  section 4.2.2 and to in- 
troduce the energy parameter E in the calculations. 
To attain that goal it is necessary to start with an 
asymptotic expansion for xp which is more accurate 
than the one we have considered (which was in- 
dependent of  E). 
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