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Exact motion in noncentral electric fields 
Andre Hautot* 

University of Liege, Institute Physics, Sort Tilman par 4000 Li~ge /, Belgium 

We study the problem of the motion of a charged particle in noncentral potentials of the type 
f«(J)/r2 + V(r). Newton's and Schrodinger's mechanics are considered. Exact solutions exist if 
V(r) = - H/r or Kr2 (i.e., Coulomb or harmonic oscillator potentials) whilef«(J) may have at 
least three different expressions as a function of (J if the problem is three-dimensional and seven 
expressions if it is two-dimensional. The classical trajectories are computed and the energy levels in 
the corresponding quantum problem are given. Analogies between the two treatments are discussed. 

For a presumed complete bibliography about the prob
lem of finding exact solutions to the equations of motion 
in the presence of unusual types of potentials see Refs. 
1-10. Central magnetic fields were treated in a previous 
paper.10 We now turn to noncentral electric potentials 
of the type 

J::::: (J.I/e) [j(6)/r2 + V(r)], 

where J.I is the mass and e the charge of the particle, 
(r, 6, cp) its spherical coordinates. V represents its 
velocity,y its acceleration. i equals -J- 1. We shall 
perform the calculations both for Newton's and for 
Schrodinger's mechanics. 

I. NEWTON'S MECHANICS 

Newton's equation can be written in the form 

y::::: - grad [j(6)/r 2 + V(r)] 

or in more detail 

y ::::: - (l/r) V'(r)r + 2/(6) r/r4 - (l/r4)/'(6) 

(1) 

x [xz(x2 + y2tl/2,yz(x2 + y2t1/2,_(X2 + y2)1/2]. 
(2) 

A. The radial integration 

The conservation of energy implies 

v2 + 2/(6)/r2 + 2 V(r) = a (= const). (3) 

By scalar multiplication of (2) by r we obtain: 

roy = - rV'(r) + 2/(e)/r2. 

From this equation we deduce 

d(rov)/dt = roy + v2 = a - rV'(r) - 2v(r). 

Remembering that 2r o v = dr2 /dt, we have after a classi
cal integration 

rov = (ar2 - 2r2V(r) _ b)1/2. (4) 

Finally, 

J dt = J r(ar2 - 2r2 V - btl/2 dr = F(r). (5) 

It is very remarkable that the radial motion is indepen
dent of the non central term in the potential (1). Equation 
(5) is exactly integrable by means of circular functions 
in the two classical cases: 

V= V1 =-H/r 

V= V2 = Kr2 

(Coulomb potential), 

(harmonic oscillator). 
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In what follows we shall always restrict ourselves to 
these two possibilities and concentrate on the noncentral 
term in (1). It must be pOinted out that a> 0 if V = Kr2 , 

but that a < 0 if V = - H/r (for bound states). 

B. Angular integrations 

Let us define P = r x v; its modulus squared p2 can be 
written as 

p2 ::::: r2v2 _ (rov)2. 

USing (3) and (4) one finds 

p2 = b - 2/(e). 

Although the modulus of the angular momentum is not a 
constant of the motion, the expression p2 + 2/(e) is con
served. On the other hand, in spherical coordinates, p2 
equals r4(8 2 + sin2e<p2) where the point denotes time 
differentiation, and 

r4(8 2 + sin2e<p2) = b - 2/(e). (6) 

By vector multiplication of (2) by r one finds 

dP/dt = - [f'(e)/r 2)[- y (x2 + y2)-1/2,x(x2 + y2)-1/2, 0]. 

One concludes that dPz/dt = 0, and after integration 

P z = r2 sin2 ecp = d (d = const). (7) 

Equations (6) and (7) allow us to find the two last inte
grations needed for the complete solution of this prob
lem: 

1= J sine de 
-J[b - 2/ (e)] sin2e - d2 

::::: J.!(ar2 -2r2V-bt1 / 2dr, (8) 
r 

J = d J de = f dcp. 
sine -J[b - 2/(e)] sin2 6 - d2 

(9) 

The problem is now solved. An exact solution exists 
provided the integrals present in (8) and (9) are elemen
tary. The expression "exact solution" has been defined 
in our previous paper10 as solutions expressible in 
terms of circular or at most elliptic functions. 

Remark 1: Equation (7) indicates that Pz is a con
stant of the motion. If we can choose the Oxz plane so 
that it contains the initial vectors r(t = 0) and v(t= 0) P 
is directed along the y axis, so that P z = d = O. The 
trajectory is entirely contained in the Oxz plane: r and 
6 are the polar coordinates in the Oxz plane. Equation 
(9) vanishes and (8) determines the polar equation of 
the trajectory. 

Copyright © 1973 by the American Institute of Physics 1320 
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Remark 2: In connection with Remark 1 it must be 
pointed out that classical mechanics makes no distinc
tion between the motion in the three-dimensional poten
tial (1) (where r 2 ::::: x 2 + y2 + z2) and the motion in the 
two-dimensional potential (1) (where r 2 ::::: x 2 + y2) pro
vided d = 0 in the first case and v z ::::: 0 in the second 
case. In both cases the trajectory is located in a plane. 
It can happen (see examples below) that quadratures (S) 
and (9) may be exactly performed when d::::: 0 but not 
d "" 0: then the exact solution for the three-dimensional 
problem only exists with suitable initial conditions (see 
Remark 1) without equivalent in the quantum formalism. 
With respect to the Schrodinger equation, an exact solu
tion is to be expected only for the two-dimensional 
problem (i.e., in cylindrical coordinates). 

1. Elementary integrations 

In Remark 2 it was shown that if a Newtonian problem 
involving a potential of the type (1) is soluble in two 
dimensions it is also soluble in three dimensions pro
vided suitable initial conditions are imposed. In fact, 
it suffices to choose adequately the orientation of the 
axis of reference. In view of future convenience in the 
comparison between the classical and quantum treat
ments of a same problem we must however distinguish 
potentials which lead to elementary quadratures for 
arbitrary d from those which need d = O. It is not diffi
cult to see that the following functions f(e) satisfy the 
required condition. 

Elementary integrations for arbitrary d-values: 

(10) 

(b) f(e) = (f'[2/2p.2)(a cos4 e + {3 cos2e + y)sin-2ecos-2e, 

(11) 

(c) f(e):= (f'[2/2p.2)(a cot2e + {3 cote + y). (12) 

Elementary integrations when d = 0 only: 

(d) f(e) ::::: (f'[2/2p.2)(a sin2e + {3 sine + y) cos-2e, (13) 

(e) f(e) = (1i2/2p.2}(a tan2e/2 + {3 tane/2 + y), (14) 

(f) f(e) = (f'[2/2p.2)(a cot2e/2 + {3 cote/2 + y), (15) 

(g) f(e) = (f'[2/2p.2)(a tan2e + {3 tane + y). (16) 
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integrate the case d = 0 for the sake of brevity. With 
the new variable u = cose Eq. (S) becomes 

- J[- (b + a1i2/p.2)u2 - ({31i2/p.2)u + (b _1i2y/p.2)]-1/2 

x du = f (ar2 - 2r2 V - b )-1/2 (l/r) dr. 

We shall see in the final discussion that these quadra
tures lead to circular functions only if a, fJ, and y obey 
the conditions 

a + fJ + Y ;;. 0, 
(IS) 

a - fJ + Y ;;. O. 

If not, the solutions are logarithmic so that the motion 
is not stable. We shall therefore impose (IS). Finally, 
for V = VI = - H/r one obtains the polar equation of 
the trajectory: 

(b + a1i2/p.2tl/2 arcsin 
2(b + a1i2/p.2) cose + {3!i2 /p.2 x ----~------~~------~~-------

[fJ2f'[4/p.4 + 4(b + a1i2/p.2)(b - y1i2/p.2)]1/2 

::::: b-l/2 arcsin b - Hr + ct. 
r(H2 + ah)1/2 

The trajectory is a rosette contained between two 
circles so that 

(19) 

It is not difficult to see that the trajectory is closed if 

b-1/ 2(b + a1i2/p.2)1/2 ::::: min, a rational number. 

When V = l'2 = Kr2 , the trajectory is found to be 

(b + a!i2/p.2tl/2 arcsin 
x 2(b + a1i2/p.2) cose + fJ1f2/p.2 

[/321i4/p.4 + 4(b + aJi2/p.2)(b - y1l2/p.2»)1/2 

::::: (1/2) b-1/2 arcsin 2b - ar2 + Ct 
r2(a2 - SbK)1/2 

which again presents the aspect of a rosette so that 

(2b)1/2 (a + ,Ja2 - SbKtl/2 < r < (2b)1/2 

The parameters a, /3, and y have arbitrary constant x (a - ,Ja2 - SbK)-1/2. 
values (apart from conditions specified below). The 
factor 1i2/2p.2 is introduced in view of future convenience. It is closed if the above condition is fulfilled. 
We shall solve in detail the problem involving the first 
of these potentials. For the others we shall restrict (b) We now study the motion in the electrical potential 
ourselves to the equation of the trajectory. We shall 
also investigate the condition under which the motion is J = (p./€)[(1i2/2p.2) 
stable, i.e., 

o < r min < r < r max' 

(a) Except for the trivial case a ::::: fJ = y = 0, only one 
special case of (10) seems to have been investigated in 
the literature:1 {3 = 0, a ::::: - y so that the total poten
tial (1) remains central. The study of the motion in the 
electrical potential 

J::::: (p./€) [(1i2/2p.2) 

x(a cos2e + {3 cose + y)/(r2 sin2e) + V(r)], (17) 

where V(r) ::::: - H /r or Kr2. seems to be new. We only 
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(a cos4 e + {3 cos2e + y)/(r 2 sin2e cos2 e) + V(r)]. (20) 

Equation (S) can immediately be integrated provided 
cos2 e is taken as new variable. The equation of the tra
jectory is (take V::::: VI for example) 

(1/2)(b + a1i2/p.2tl/2 arcsin 

x 2(b + a1i2/1'2) cos2e - (b - {31f2/p.2) 

[(b - {3Ii2/p.2)2 - 4(b + a1i2/p.2)1i2y/p.2]1/2 

::::: b-1/2 arCSin b - Hr + ct. 
r(H2 + ab)1/2 
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The following conditions are needed for a stable motion: 

a + {3 + y ~ 0, 

y ~ O. (21) 

(c) We study the motion in the electric potential 

J == (IJ./E) [(1i 2/21J.2)(a cot2e + {3 cote + y} + V(r}). (22) 

Equation (8) can be integrated provided the new (com
plex!) variable e2iEl is taken. The equation of the trajec
tory is (V= Vl): 

(i/2}[1i2(y - a + i{3}/1J.2 - b)-l/2 arcsin 

x [1i2({3 + 2ia}/1J.2) cote + [1i2(2y + i{3}/1J.2) - 2b 

(cote - i)[(1i4j32/1J.4) + 4(1i2a/1J.2)(b - 1i2y /fj2})112 

+ c.c. = b-l / 2 arcsin b - Hr + const. (23) 
r(H2 + ab}1/2 

No restrictions on a, {3, and y have to be imposed. 

In the cases (a), (b), and (c) both integrals (8) and (9) 
lead to elementary functions for arbitrary d-values. It 
is only for the sake of brevity that we put d = 0 in the 
equation of the trajectory. In the following problems 
(d), (e), (f), and (g) the condition d = 0 is needed. 

(d) We study the motion in the electric potential 

J = (/-I/E)[(1i2/2/-12)(a sin2e + (3 sine + y)/(r2 cos2e) + v(r)]. 

(24) 
Here it is necessary to choose the orientation of the axis 
of reference so that d = 0 in (8) (see Remarks 1 and 2) 
if we want elementary quadratures. The equation of the 
trajectory is obtained by simply replacing e by 11/2 - e 
in (19). Indeed potential (13) deduces from (10) in that 
way. However, (8) indicates that the sign of the first 
member of the equation of the trajectory must be in
verted. The condition of stability is again (18). 

(e) We study the motion in the electric potential 

J = (/-I/E)[(1i2/2/-12)(a tan2(e/2) + (3 tan(e/2) + y) + v(r}). 
(25) 

I(e} = (a cos2e + {3 cose + y} cos-2e (put u = cose), 

I(e) = (a sin2e + (3 sine + y) sin-2e (put z = sine), 

I(e} = (acose + (3 sine + y) cos-le l 
I(e) = (a cose + (3 sine + y) sin-le 

I(e} = (a cose + {3 sine + y sin2e + 0 sine cose + E} 

The list does not terminate here but we think it is of 
little interest to write it in extenso. 

3. Other possibilities of exact motion 

The conclusions of the preceding sections are valid with 
arbitrary initial conditions (see, however, Remarks 1 and 
2). In this section we deal with exact motions allowed by 
suitable initial conditions. It was recently shown by 
Armenti and Havasl2 that an exact motion is sometimes 
possible outside the plane of symmetry e = 11 /2 when a 
monopole-prolate quadrupole potential acts on the par
ticle. However, very special initial conditions are 
needed to this end. The authors noted that the conclu
sions are also valid when one considers noncentral 
potentials if in addition to an attractive radial force, 
there is a e-component of the noncentral force directed 
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Equation (8) can be integrated with the new variable 
tan(e/2). 
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The trajectory is described by an equation of a rather 
unusual type: 

i[1i2(y - a + i{3}/Jl2 - b)-l/2 arcsin 

x [1i2({3 + 2ia}/Jl2) tan(e/2} + [1i 2(2y + i(3)//-I2)- 2b 

[tan(e /2) - i)[(1i4{32 /Jl4) + 4(1i2a/p.2)(b _1i2y /p.2»1/2 

+ c.c. = - b-l / 2 arcsin b - Hr + ct. (26) 
r(H2 + ab)l/2 

Complex quantities are mixed to give a final real result; 
the problem (c) led to the same remark; there are no 
restrictions on the values of a, {3, and y. 

(f) We study the motion in the electric potential 

J = (j.t/E)[(1i2/2Jl2)(a cot2(e/2) + (3 cot(e/2) +y)+ V(r»). 

(27) 

Since it follows from (25) by the substitution e --7 11 - e 
Equation (8) indicates that the equation of the trajectory 
is obtained by carrying the same substitution in (26) 
after having inverted the Sign of the first member. No 
restrictions about a, {3, and y. 

(g) We study the motion in the electric potential 

J = (Jl/E)[(1i2/2Jl2)(ct tan2e + (3 tane + y) + V(r») (28) 

The equation of the trajectory obviously follows from 
(23) by the substitution e ~ 11/2 - e, after inverting the 
sign of the first member. No restrictions about a,{3, 
and y. 

2. Elliptic integrations 

Let us make the equation of the trajectory (8) rational 
by a suitable change of variables. If the irrationality is 
of the third or of the fourth degree the trajectory may 
be written with the aid of elliptic functions. The poten
tials (1) for which I(e) has the following values lead to 
elliptic integrals: 

[puty = tan(e/2»). 

away from the plane of symmetry. It must be pointed 
out that since the existence of such a movement depends 
on the initial conditions no equivalent can exist in the 
quantum formalism. 

(a) We prove that the following exact motion is possible: 
S = 0, cP = w = const --7 cP = wt + CPo. The trajectory is 
thus a circle located in a plane at the distance d = r 
cose from the plane of symmetry. 

From the equations of motionll : 

V' (r) - 2/(e)/r3 = w2r sin2e, 

1'(e)/r3 = w2r sine cose. 

We deduce 

w2 == I' (e)/(r 4 sine cose), 
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and 

r 3 V'(r) ::;: 2f(e) + f'(e) tane. 

Such a motion is therefore possible provided f' cose > 0 
and r 3 V' - 2/ > O. The first equation determines the 
angular velocity while the second connects r and e, i.e., 
it gives the distance d = r cose between the plane of the 
trajectory and the plane of symmetry. As an example, 
let us investigate the case VCr) = Arn - 2• Simple alge
braic calculations show that 

d = ([2f(e) + f'(e) tane]/A(n - 2)}1/n cose, 

w = ± U' (e)/sine cose]1/2 {A(n - 2)/[2f(e) + f' tane]} 2/n. 

(b) Another special motion is deduced from: e = 0, 
cP = O. The trajectory is located on a straight line pass
ing through the origin. Of course such a motion also re
quires special initial conditions. Furthermore, if we 
restrict ourselves to potentials of the type (1), we must 
ensure that r /\ y = 0 which leads to (- y ,x, O)f'= O. If 
f' = 0, f = const is fulfilled the problem may be solved 
exactly like a one-dimensional problem on account of 
the fact that the potential remains central. An exact 
straight line motion in a noncentral potential is also 
possible along the Oz axis because in this case x =y = O. 

II. SCHROOINGER'S MECHANICS 

We have already seen (see Remark 2) that the quantum 
problem involving potentials like (1) is soluble in three 
dimensions if fee) is given by (10), (11) or (12) and that 
it is soluble in two dimensions in all cases (10) to (16). 

A. The three-dimensional problem 

We use spherical coordinates r, e, cp. Schrodinger's 
equation takes the form: 

a2
1f; + (2/r) alf; + (1/r2) a2

1f; 
ar2 ar ae 2 

+ (cote /r 2) alf; _ (m2/r2 sin2e) If; + 2j.L 
ae n2 

x [E - j.Lf(f))/r2 - j.LV(r)]l/I = O. 

The variables can be separated in the usual way: 
If; = exp(imcp) 6 (f))R(r) (m is the usual magnetic quan
tum number; we assume m > 0; calculations are analo
gous when m < 0). One has 

r2R" + 2rR' + (2/J-/n2) r 2 (E - /J-V(r))R + sR = 0, (29) 

6" + coW 6' - (m 2/sin2f))6- (2j.L2/n2)f(e)6- sO = O. 
(30) 

As in the Newtonian formalism, the radial motion does 
not depend on the term f(e)/r2 present in the potential. 
We next investigate the two cases mentioned in Sec. I.A. 

Case 1: V= V1 = - H/r. 

Equation (29) reduces to the radial equation of a hydro-

1323 

gen-like system. The energy levels are 

(31) 

where the parameter 5 may only take special values to 
be determined from (30). 

Case 2: V= V2 =Kr2. 

The radial equation (29) is the same as in the theory of 
the three-dimensional harmonic oscillator; the energy 
levels are given by 

E = n 12K [2n + 1 + (1/4 - 5)1/2], (32) 

where again s is quantized. Of course when fee) = 0, 
s = - l(l + 1) and we obtain the classical formulas for 
the energy levels of the hydrogen atom or of the harmo
nic oscillator. 

It only remains to solve the f)-equation (which does not 
depend on the choice V = V1 or V = V2) to discover the 
allowed s-values. 

The e-equation is exactly soluble by means of known 
transcendental functions only when f(f)) is given by (10), 
(11) or (12). 

(a) The quantum motion in the electric potential (17). 

The e-equation (30) becomes 

6" + cote 6' - (m2/sin2e)6 

- (c:r cos2f) + (3 cose + y) sin-2f) 6 - sO = O. (33) 

We make the following substitutions: 

v = cos2(e/2), 6 = vP (1 - v)o T, 

where 

p = (1/2)(m 2 + c:r - {3 + y)1/2, 

a = (1/2)(m 2 + c:r + {3 + y )1/2, 

v(l - v)T" + [(2p + 1) - (2p + 2a + 2)v] T' 

- [2pa + s + a + {3/2 + 2p2 + p- c:r]T= O. 

We recognize the hypergeometric equation. The poly
nomial condition gives the allowed s-values. One findS 
(k = 0,1,2, ... ) 

T = F(- k,k + (m 2 + c:r - {3 + y)1/2 + (m2 + c:r + {3 + y)1/2 

+ 1;1 + (11'12 + c:r - (3 + y)1/2;v), 

/1/4 - s = - c:r + (k + P + a + 1/2)2. 

This relation must be introduced into (31) and (32) to 
obtain the energy levels when V = V1 or V::;: V2' res
pectively. In what follows we only consider V == V l' 
(The other case is analogous.) The energy levels are 
by (31) 

E == - (j.L3H2/2n2) {n + 1/2 + ../- c:r + [k + (1/2)(11'1 2 + c:r - {3 + y)1/2 + (1/2)(m 2 + c:r + {3 + y)1/2 + 1/2]2}-2, 

J. Math. Phys., Vol. 14, No. 10, October 1973 
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when n,k = 0,1,2,···. 

(b) The quantum motion in the electric potential (20). 

The e-equation (30) becomes 

6" + cote 6' - (m 2/sin2e)6 - (a cos4e + (3 cos2e + 1') 

x sin-2e cos-2e 6 - s6 == O. (34) 

We make the following substitutions: 

W "" cos2 e, e = wP(I- w)o T, 

where 
p :::: 1/4 + (1/4)(1 + 41')1/2, 

a = (1/2)(m 2 + a + {3 + 1')1/2, 

1324 

w(1 - w}T" + [(2p + 1/2) - (2p + 2a + 3/2}w] 

T' - (1/4)(s + Spa + m 2 + (3 + 21' + 2a + 4p) T = O. 

The solution is again the hypergeometric function 

T = F(- k,k + 1 + (1/2}(1 + 41')1/2 

+ (m 2 + a + {3 + 1')1/2; 1 + (1/2)(1 + 4y)1/2;w), 

1/4 - s :::: - a + [2k + 1 + (1/2)(1 + 4y)1/2 

+ (m 2 + a + {3 + y)1/2J2, 

with the energy levels: 

E :::: - (j.L3H2/21l2) {n + 1/2 + .../- a + [2k + 1 + (1/2)(1 + 41')1/2 + (m2 + a + j3+ y)1/2)2}-2, where n, k = 0,1,2, ..•. 

(c) The quantum motion in the electric potential (22) 

The e-equation (30) becomes 

6" + cote 6' - (m 2 /sin2e) 6 

- (a cot2e + {3 cote + y)6- s6:::: O. 

We make the following substitutions: 

z::::e2te , 6=zo(l-z)TT, 

where 

a = (1/4) + (1/2)(1/4 - y - s + i{3 + 01)1/2, 

T:::: (m 2 + 01)1/2. 

The T-equation is again hypergeometric. One finds 
(k :::: 0,1,2, ... ) 

S ::::: (1/4) _ y + a _ (2k + 1 + 2.../m 2 + 01)4 - 4j32 , 
4(2k + 1 + 2...jm2 + 01)2 

T= F[- k,k + 1 + (1/4 - I' - s + i{3 + 01)1/2 

+ 2(m 2 + a)V2; 1 + (1/4 - y - s + i{3 + a)l/2;z]. 

The energy levels are given by (31) (we only consider 
the case V:::: V1 ): 

E::::- (j.L3H2/2n2)t + 1/2 

j (2k + 1 + 2..Jm2 + 01)4 - 4{32j-2 + Y - a + .0...... _____ ==== ___ '--
4(2k + 1 + 2..Jm 2 + 01)2 ' 

where n,k = 0,1,2,···. 

B. The two-dimensional problem 

We use cylindrical coordinate Y, e,z. Schrodinger's 
equation is then written as 

y2 021/1 + Y 01/1 + 021/1 + y2 021/1 
oy2 oY oe2 oz2 

Variables can be separated in the usual way: 
1/1 = exp(ip .. zj1i}R(Y)6(e). (PI! is the z component of the 
momentum; it is a constant of the motion.) One has 
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r-
6"- (2j.L2/n2)f(e)6 + s26 = O. (36) 

Once again the radial motion is independent of fee). 
V = V1 or V2 and the radial equation is analogous to 
that encountered in the problem of the two-dimensional 
hydrogen atom12 or that of the two-dimensional oscilla
tor. Energy levels are given by 

Case 1: V= V1 = - H/Y, 

E :::: (p;/2/.L) - 2 (j.L3H2 j1i2)(2n + 2s + 1)-2, 
(37) 

Case 2: V = V2 = Ky2, 

E:::: (p~/2j.L) + n..f1K(2n + s + I), (3S) 

n = 0,1,2"" while s may only take quantized values. 
These are found by solving (36). 

The e-equation is soluble in terms of known transcenden
tal functions in seven cases: when fee) is given by (10) ••• 
or (16). Three of them have been treated in three dimen-
sions. Therefore we shall omit the corresponding two
dimensional treatments. 

(d) The quantum motion in the electric potential (24) 
(two-dimensional). The 8-equation (36) becomes 

e"- (a sin2 e + (3 sine + 1') cos-2ee + s2e:::: O. 

We make the following substitutions: 

y = (1- sine}/2, e =yP(I-y}oT, 

where 

p:::: 1/4 + 1/4(1 + 401 + 4j3 + 41')1/2, 

a = 1/4 + 1/4(1 + 401 - 4{3 + 41')1/2, 

y(I-Y)T" + [(2p+ 1/2)- (2p + 20"+ l)y]T' 

(1/2)(- 2S2 + P + 0" + 4pa + I' - a) T :::: O. 

The solution is hypergeometric: 

T = F(- k,k + 1 + (1/2)(1 + 401 + 4{3 + 4y)1/2 

+ (1/2)(1 + 401 - 4{3 + 41')1/2; 

1 + (1/2)(1 + 401 + 4{3 + 4y)1/2;y), 

S2 :::: - a + [k + 1/2 + (1/4)(1 + 401 + 4j3 + 41')1/2 

+ (1/4)(1 +4a-4j3+ 41')1/2]2. 
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The energy levels follow from 

E =:: (P~/2p.) - 2(p.3 H2 /1l2) 

X {2 n + 1 + 2 .J:-_-a----:-+'[7k -:+--=-1 /7.:2:-+"""'-;:( 1:-C/774 )"(:::-1 --:-+-4:-Ca--:'"+-;4:-::::{3-:+:-47y');-1/"'2-+-:-:(1-:/:7.4 ):-7(1::--:-+---:4:-a-_--=47{3 -:+-4y:-. 7) 1;-;/=2 J2 }-2 

wheren,k = 0,1,2, .... 

(e) The quantum motion in the electric potential (25) 
(two-dimensional). The a-equation (36) becomes 

an - [a tan2(a/2)+{3 tan(a/2) + y] a + s2a = o. 

We make the following substitutions: 

z=_e ie , a=zp(1-z)oT, 

where 

p = (s2 + a - i{3 - y)1/2, 

a = 1/2 + (1/2)(1 + 16a)1/2, 

z(1- z) Tn + [(2p + 1) - (2p + 2a + 1)z]T' 

- (2pa + a + 4a - 2i(3) T = O. 

The solution is hypergeometric: 

T = F(- k,k + 2p + 1 + (1 + 16a)1/2;2p + 1;z), 

where 

p2 = _ i{3 + (1/4) {[k + (1/2) + (1/2)(1 + 16a )1/2]4 - 4{32} 

X [k + (1/2) + (1/2)(1 + 16a)]-2. 

One finds 

S2 = _ a + y + [k + (1/2) + (1/2)(1 + 16a)1/2]4 - 4{32 . 
4[k + (1/2) + (1/2)(1 + 16a)1/2]2 

The energy levels follow from 

+ [k + (1/2) + (1/2)(1 + 16a)1/2]4 - 4{32f2 y-a , 
4[k + (1/2) + (1/2)(1 + 16a)1/2)2 

where n,k = 0,1,2,···. 

(f) The quantum motion in the electric potential (27) 
(two-dimensional). The a-equation (36) becomes 

an - (a cot2(a/2) + (3 cot(a/2) + y)a + s2a =:: O. 

It deduces from the a- equation of Sec. II. B e by the 
substitution a -7 1f - a. Therefore, the wavefunction is 
obtained through the same procedure while the energy 
levels are given by the same formula. 

(g) The quantum motion in the electric potential (28) 
(two-dimensional). The a-equation (36) becomes 

en - (a tan2a + (3 tana + y) a + s2e =:: O. 

We make the following substitutions: 

z =:: 1 + e2ie, e =:: zP(1- z)o T. 

where 

p =:: (1/2) + (1/2)(1 + 4a)1/2, 

a = (1/2)(s2 + a - i{3 - y)1/2, 

z(1 - z) Tn + [- (2p + 2a + 1)z]T' 

- [2pa + p + a - (i{3/2)] T = O. 

The solution is hypergeometric: 

T =:: F(- k,k + 1 + (1 + 4a)1/2 

+ (s2 + a - i{3 - y)1/2; 

1 + (1 + 4a)1/2;z) 

[(1 + 4a)1/2 + 1 + 2k]4 - 4{32 
s2 = Y - a + , 

4[(1 + 4a)1/2 + 1 + 2k)2 

with energy levels 

[(1 + 4a)I/2 + 1 + 2k]4 - 4{32}-2 
y-a+ , 

4[(1 + 4a)1/2 + 1 + 2k)2 
wheren,k = 0,1,2,· ... 

C. Conditionally soluble quantum motions 

In this section we shall investigate the solubility of 
Schrodinger's equation when more complicated poten
tials are conSidered, precisely those which lead to ellip
tic functions in the classical theory. Since these poten
tials are numerous we shall restrict ourselves to a 
special case in view of illustrating what we have called 
in a previous paperlO the "conditional solubility". 

We choose the special case 

I(a) = (1l2/2p.2) a cos-la 
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so that we investigate the quantum motion in the electric 
potential 

J = (p./€) [a(Il/2p.2)/(r2 cosa) + V(r)]. 

ConSidering the three-dimensional problem so that one 
has in spherical coordinates, the a-equation (30) can be 
written as follows in spherical coordinates: 

en + cote 6' - m 2 sin-2a a - a cos-Ia e - sa = o. 
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We make the following substitutions: 

u = cose, e = (1- u2 )-m/2 T; 

one finds 

u(l- u)(- 1- u) T" + (2 - 2m)u2 T' 

+ [(rn2- m + s)u + a]T= O. 

This equation is of the general type 

u(l - u)(a - u)f" + (au 2 + bu + elf' + (d + eu)f = O. 

We have studied it previously.6 Polynomials solutions 
exist which ensure the integrability of 1 e 12 provided the 
four following conditions are fulfilled: 10 

a + b + e = - j' (1 - a) 

aa 2 + ba + e = - j" a(a - 1) 

(where j' and j" are integers., 0) 

e = - n(n + a - 1) 

+ a "continuant" condition (see Ref. 10). 

Then one has T = z i '+1 (1 - z) i"+1 p(v), where p(v) 

denotes a polynominal of degree II. 

The first two conditions are satisfied if j' = j" = m - 1. 

The third implies m 2 - m + s = - (II + 2m)(m + II + 1) 
which gives the allowed s-values. 

The continuant condition is expressed by the vanishing 
of a continuant of order 11+ 1. We have previously seen10 

that each value of II must be analyzed separately leading 
to a quantization of the parameter a entering into the 
definition of the potential. For example, when II = 2 the 
determinant is of order three: 

d e 

e d+b 

o a+e 

o 
2(e - 1) 

d + 2b 

= O. 

In this case, the problem is soluble only if a = ± 2..J4m + 2. 
Performing the same operation for each value of II we 
arrive at the list of the allowed values for a. Inversely 
a being fixed (among the allowed values of course) II, m 
and s are also fixed so that arbitrary angular momentum 
states are automatically forbidden. We retrieve the con
clusions of our preceding paper.10 

If II = 2, one finds s = - (m + 2)(m + 3) and the energy 
levels are 

Remark 3: This formula is analogous to the one 
giving the hydrogen spectrum except for the fact that 
the ground state and the first excited state are missing. 
Such a truncated hydrogen-like spectrum is found for 
every value of II. 

III. DISCUSSION AND CONCLUSION 

In this paper we examined the various potentials of the 
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type (1) which allow a complete integration of the equa
tions of motion in both classical and quantum nonrelati
vistic mechanics. Our first conclusion is that the three
dimensional problem is completely soluble if the par
ticle experiences the potentials (17), (20), or (22) while 
the two-dimensional problem is soluble when potentials 
(17), (20), (22), (24), (25), (27), or (28) are considered. 
To our knowledge these potentials were not treated be
fore in the literature. It is interesting to compare the 
classical and the quantum treatments. As in our pre
vious paper10 it is possible to exhibit analogies from 
two different points of view: 

(a) Firstly, there are some purely formal analogies: 
the resolution of Newton's equation and that of Schro
dinger's equation offer many common points in spite of 
their well distinct origins. Variables separate in both 
equations for the same potentials. The changes of 
variables needed for the complete calculation are often 
identical. The analogy is sometimes very suggestive, 
e.g., the classical handling of potentials (22) or (25) 
leads to a trajectory whose equation contains complex 
quantities but so mixed that the overall result is real. 
The quantum equation leads to the same result: it is 
impossible to avoid the use of complex numbers in the 
calculation of the energy levels though the final expres
sion is of course real. Beside the potentials mentioned 
above, there is a large class of potentials which allow 
a complete integration of the classical equation of 
motion in terms of elliptic functions. The corresponding 
problem in quantum mechanics leads to a conditional 
solubility analog to that previously encountered in a 
paper dealing with the motion in various magnetic 
fields.1 o 

(b) Physical analogies also exist. Firstly we note 
that in classical mechanics potentials (17), (20), and (22) 
allow an exact solution whatever the choice of the axis 
of reference while potentials (24), (25), (27), (28) are 
soluble only for a special choice of these axes. In quan
tum mechanics the potentials of the first category are 
soluble in three dimensions (also in two) while those of 
the second category are soluble in two dimensions only. 
A Schrodinger's equation soluble by means of elemen
tary transcendental functions (with energy levels) cor
responds in the claSSical theory to a bounded trajectory 
expressible by means of circular functions: the para
meters entering into the definition of the potential are 
submitted to analogous conditions in both mechanics in 
order to warrant a stable motion. Before terminating 
let us illustrate this last point with an example. Consi
der the motion in the potential (17); the quantum solution 
is given in Sec. II. A(a). The formula which determines 
the energy levels is only valid under the conditions 

a - {3 + Y ., 0, 

a + (3 + Y ., O. 
(39) 

It is not difficult to show tqat these conditions are suffi
cient to ensure the stability of the classical trajectory. 
Let us return to Sec. I. B(a). It is easily seen that the 8-
integration leads to circular functions only if b + a1'i2/ 
1J.2 > O. Otherwise, the quadrature leads ~o ~o?arith.ms 
and the trajectory spirals to r = 0 or to mfmlty. Smce 
b - 2f(8) = p2 > 0 it is sufficient that 

b + a1'i2/1J.2 ., b - 2f(8), where f(8) is given by (10). 
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After some reductions one obtains the condition 

O! + {3 cose + y "" 0 

to be compared with (39). 

In conclusion, the connection between the classical and 
the quantum treatments of the problem here investi
gated can be stated as follows: when the classical tra
jectory is stable (0 < r min < r < r max) and when it is 
expressible by means of circular functions, the corres
ponding quantum problem is exactly soluble in terms of 
known functions and the energy spectrum contains a dis
crete part. If the trajectory is stable but can only be 
expressed by means of elliptic functions, the connection 
with the classical motion disappears. However, in that 
case the example treated in Sec. II. C indicates that the 
quantum energy spectrum may be discrete if the para
meters entering in the definition of the potential are 
limited to discrete values. Finally, it must be pointed 
out that exact motions in classical mechanics some
times occur when very special initial conditions are 
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imposed. In this case no equivalence seems to exist in 
quantum mechanics. 
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