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University of Liege, Institute of Physics, Sart Tilman par 4000 Liege ], Belgium 
(Received 26 February 1974) 

A new method is presented which sums certain slowly convergent series. It is based on the use of 
the Hankel integral transform and Schlomilch series. This method is applied with great success to 
the computation of lattice sums in ionic crystals. In particular, the Madelung constant is calculated 
with great accuracy through rather simple calculations: The final results only involve elementary 
functions so that the numerical evaluation is quite easy. 

I. INTRODUCTION 

It is commonly admitted that the interaction potential 
in an ionic crystal follows the law qq' /r - A/rs. q and 
q' are the charges of the ions and r is the distance be
tween them. The total interaction for an ion is therefore 
described by the following lattice sums: , 
(11= ,0,0,0 (±)r- l (= Madelung constant of the crystal), (1) 

(s > 3). 

The symbol (±) indicates that the signs of the ions are 
taken into account (and also the modulus of the charges 
if they are not equal for the various ions). The prime 
means that the summation is extended to all the ions in 
the crystal except that for which r= O. 

Many solutions have been proposed for evaluating 

(2) 

these sums. The natural method of counting (increasing 
r) is not interesting since the convergence is bad. 
Evjenl has modified the way of counting to improve the 
convergence. In spite of its success it must be recog
nized that the convergence remains poor. The method is 
almost interesting when one deals with very complicated 
multiple sums, for which no analytic method can be used. 
Madelung2 calculated (11 by means of Fourier series. The 
convergence of the method is quite good. However it is 
not very elegant and Evjen l pointed out that the treatment 
lacked rigor in some places. The most powerful method 
with regard to the available accuracy is due to Ewald3

• 

Unfortunately the method is far from simple. Born and 
Huang4,5 have based another method on the properties of 
Jacobi's theta functions but the method loses its initial 
elegance when applied to numerical computations. Very 
recently6 Glasser showed how it was possible to sum (1) 
and (2) when the lattice is even-dimensional but pointed 
that no extension seems to exist to the important three
dimensional case. Now one could ask: why a new 
method? Our answer lies in the two following points: 

In spite of the existence of numerous summation 
methods there is some need for a simple method leading 
to very accurate values through accessible intermediate 
calculations. 

Such a simple method exists and provides an interest
ing application of the so-called "Schlomilch series" in 
mathematical physics. 

II. MATHEMATICAL PRELIMINARIES 

A. A useful laplace transform 

Let us first recall a formula which shall play an im-
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portant role: 

x [Js_l /2(bx)/(bx/2)S-l/2] dx. (3) 

If we have to sum on both a and b, it might be very 
tempting to sum first with respect to a since the inte
grand is simply the general term of a geometriC series. 
However there is a better method: it is possible to sum 
with respect to b. One obtains a Schlomilch series with 
very useful properties. 

B. Some theorems about Schlomich series 

These series were first investigated by Schlomilch7 in 
the last century. Now this subj ect is claSSiC and it is 
developed in advanced books dealing with the theory of 
Bessel functions. 8 We present some classical results 
about Schlomilch series which are interesting for our 
purpose. Schlomilch has investigated the problem of 
expanding an arbitrary function into a Schlomilch 
series: 

~ 

fix) = [ao/2r(s + 1)] +6 [amJs(mx) + b"!/s(mx) ]/(mx/2)S 
m=l 

where Js and Hs are Bessel and Struve functions, re
spectively.8 Nielsen9 has found the following results (all 
the functions below are even): 

~ 

fs(x) = [l/2r(s + 1)] + 2:;(- 1)mJs(mx)/(mx/2)S 
m=l 

+~ 

=(l/2),0(-1)mJs(mx)/(mx/2)s=O if O<X<1T (4) 
-~ 

if (2q - 1)1T < X < (2q + 1) 1T. 

It is also possible to establish that: 
~ 

gs(x) = [l/2r(s + 1)] +6 Js(mx)/(mx/2)S 
m=l 

+~ 

= (l/2)?2 ~(mx)/(mx/2)S 

=[1Tl / 2/xr(s+l/2)] if O<X<21T (5) 

= [1Tl / 2/xr(s + 1/2)] + (21Tl / 2/xr(s + 1/2)] 
q 

X,0[l_(2n1T/x)2]S-l/2 if 2q1T<x<2(q+1)1T. 
n=l 

Copyright © 1974 American Institute of Physics 1722 
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From these two fundamental formulas we deduce other 
simple expressions: 

'" +,. 
[1/r(s + 1)] + 2 ~ Js(2mx)/(mx)s=~ Js(2mx)/(mx)S 

m=l _«I 

= fs(x) + gs(x) , (6) 
,. 

E J.[(2m - l)x ]/[(2m - 1)x/2]' 
m=l 

= B J.[(4p + l)x ]/[(4p + 1)x/2]' -,. 
+,. 

=:0 J.[(4p + 3)x ]/[(4p + 3)x/2]' 
-'" 

= ~~ J.[(2p + l)x ]/[(2p + 1)x/2]s = t[g.(x) - f.(x)]. (7) 

C. Hobson integral and its consequences 

The modified Bessel function of the third kind K. ad
mits the following integral representation due to Hobson: 

1." exp(- bx)(x2 - a2)S-1 /2 dx = (2a/b)S1T-1 /2r(s + 1/2)K.(ab). 

(8) 

This formula enables us to calculate the following 
expressions: 

and 

(9) 

Qs(b) = 1'" exp(- bx)x2sgs(x)dx (s > 0). 
o 

(10) 

One finds without difficulty through (4), (5), and (8) that 

P.(b) = 2(21T/b)'[K.(1Tb) + 3'Ks(31Tb) + 5'Ks(51Tb) + .•. ], 

(11) 

Qs(b) = 22s-1b-2sr(s) + 2(21T/b)"[2'K.(21Tb) +4'Ks(41Tb) + ... ]. 

(12) 
These expansions are very rapidly convergent. For 
example if in (11) we set s = 0 and b = 1, the first term 
in the brackets is K O(1T) -3.10-2 while the third term is 
Ko(51T) -5.10-8 ; the third term brings a relative correc
tion less than 2.10-6 • The quick convergence is the con
sequence of the asymptotic behaviour of K.(z) 
-( 1T/2z)1 /2 exp( - z). 

III. EVALUATION OF LATTICE SUMS 

We shall apply the new method to the evaluation of O! 
and M. in the three fundamental cubic lattices: the NaCI 
structure, the CsCI structure and the znS structure. 
The method extends without difficulties to the noncubic 
systems. 

A. The NaCI structure 

The coordinates of the ions are integers.m, n andP. 
The charge of each ion is (_ 1)m+n+p+1. 

1. The Madelung constant O! (NaG!) 

O!(NaCI) = ~ B ~ '(_ 1)m+n+p+1(m2 +n2 + pZ)-l/Z 
-'" 

= r; '[]'(- 1)m+n+1 J" exp[ - x(mZ + nZ)l/Z] 
-'" 0 

X[~(-1)PJo(PX~dX+~'(-1)p+1.rJo(pX)dX' 
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where use has been made of (3). The Schlomilch series 
in the first term equals 2fo(x). Therefore one has, with 
the aid of (9), 

O!(NaCI) =2In2+4B~'(_1)m+n+1{Ko[1T(mZ+nZ)1/Z] 
-,. 

+ Ko[31T(mZ + nZ)l /Z] + ••. } 

= 2ln 2+ 16[Ko(1T) -KO(1Tv'2) -Ko(21T) 

+ 2Ko( 1Tv'5) - Ko( 1Tv's) + 2Ko( 31T) - 2Ko( 1Tv'IO) 

+ 2Ko(1Tm) -Ko(41T) + ... ]. 

If four terms in the brackets are retained, one finds 
O!= 1. 7479. The relative error a equals 2.10-4

• Nine 
terms give 1. 747 56 (a < 2. 10-6). This simple example 
shows how neat the method is. The same result might 
be obtained by using Poisson's simple summation formula 
but it almost appears as an accident. 13 

2. Calculation of M2s (NaG!) 

M 2s(NaCI) = ~ r; B '(mZ + nZ + pZts 
-'" 

+,. 

X EJ._1/Z(px)/(px/2)·-1/Z dx 
-,. 

+ 2 ~[1T1 /z /r(s)]1o '" (x/2p)s-1 /z Js_1 /2(pX) dx 

'" = 2 Ep-2s + [22-2s 1T1 /2/r(s)] 
1 .,. 

x E 6' Qs-1 /2 [(mZ + nZ)l /Z]. 
-'" 

The first term reduces to the Riemann zeta function; the 
second term splits into two parts in agreement with (12); 
the first part is written as 

[2Z-2s1Tr(2s _ l)/[r(s) ]2] ~ E '(mZ + nZ)l/Z-s. 
-'" 

The double series has been calculated by Glasser6 who 
found that 

B 6 '(mZ + nZts = 41;(s)(3(s). 

The final result is now immediate: 

M 2s(NaCI) = 21;(2s) + [24- 2s1Tr(2s _ l)/[r(s) ]Z] 

1;(s - 1/2) (3(s - 1/2) 

+ [25 /Z-sr /r(s)] ~ '0'(mZ + nZ)U-2s) /4 
-,. 

x{2S -
1 /ZK._1 /z[21T(mZ + nZ)l /Z] 

+ 4s-1 /ZKs_1 /Z[ 41T(mZ + nZ)l /Z] + •.. }. 

Numerical examples: 

MlO = 21;( 10) + (351T/32) 1;(9/2)(3(9/2) 

+ (1T5 /96/2) {4. 29 / zK 9 / Z(21T) + 4. 49 / zK9 / Z( 41T) 

+ 4. 29 /4K9 / Z(21T;I2) + 4. 69
/ zK 9 / Z(61T) 
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The series in the brackets converges quickly: three 
terms in the series give M10 with three significant 
figures; six terms give M10 with seven figures. One 
finds 

MlO(NaCI) = 6. 426104. 

B. The CsCI structure 

The coordinates of the ions are (m + 1/2, n + 1/2, p 
+ 1/2) = positive ions and (m, n,p) = negative ions. 

1. The Madelung constant 0; (CsC!) 

+'" , 
o;(CsCI) =2:) I: 2:) {[(m + 1/2)2 +(n+ 1/2)2+ (p + 1/2)2]-1/2 

-'" 

_ (m 2 + n2 + p2t 1 /2)-

= 26 is .0'(- 1)m+n+'+1(m2+n2 +p2)-1/Z 
-'" 

+ 6I: is 6{[ 4m2 + (2n + 1)2 + (2p + 1)2]-1/2 
-'" 

Under that form the expression is well prepared for the 
introduction of a SchlOmilch series; using (3), (6), and 
(7) one finds 

o;(CsCI) = 20;(NaCI) + 6iS .01'" exp{- x[ 4mZ + (2n + 1)2]1/2)-
_'" 0 

is {Jo[(2p + 1)x] - Jo(2px)}dx, 
-'" 

+'" 

0;( CsCI) = 20;(NaCI) - 12.0 2:) Po{[ 4m2 + (2n + 1)2]1/2)-
-'" 
+'" 

= 20;(NaCI) - 246 2:) {Ko(1T[4m2 + (2n + 1)2]1/2) 
-'" 

+ Ko(31T[4m 2 + (2n + 1)2]1/2) + •.• } 

= 20;(NaCl) - 48[Ko(1T) + 2Ko(1Tv'5) + 2KO(31T) 

+ 2Ko( 1T1i3) + 2Ko( 1Till) 

+ 4Ko( 51T) + 2Ko( 1T129) + ..• ] 

= 2.03535. 

2. Calculation of M 2s(CsC!) 

+'" , 

Mas(CsCl) = 6.0 2:) {[(m + 1/2)2 + (n + 1/2)2 + (p + 1/2)2]-. 
-'" 

+'" 

+ 2as 2:) 2:) 6 [(2m + 1)2 + (2n + 1)2 + (2p + 1)2]-S. 
-'" 

The triple series is easily calculated by using the method 
which is now familiar to the reader; one finds 

+'" 

[21-as 1T1/Z/r(s)] 62:) (Qs-1/2{[( 2m + 1)2 + (2n + 1)2]1/2)-
-'" 

Using (11) and (12) one finds a first contribution of the 
type L::L[(2m + l)Z + (2n + 1)2]-s. Its value is given by 
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Glasser6 : 22
-

S (l-2-S )t"(s)/3(s). Finally one finds 

Mas(CsCl) = Mas(NaCI) + 2s+3/z1T1/2[r(S -1/2)/r(s)] 

x(1- 21/ Z-s)t"(s -1/2)!3(s - 1/2) 

'" 
- [2s+7

/ 21T" /r(s)]2:) 6 [(2m + 1)Z 
o 

+(2n+ 1)Z](1-asl/4(Ks_1/ Z(1T[(2m + 1)Z 

+ (2n + 1)Z]1/2) _ 2s-1/2Ks_1/2{21T[ (2m + 1)2 

+ (2n + 1)Z]1/2} + 3s - 1 / 2 ••• ). 

Numerical examples: 

M10( CsCl) = MlO(NaCI) + (1051T/96)(16v'2 - lW{)!3({) 
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- (321T5v'2/3)[2-9/4K9/2( 1Tv'2) - 29/4K 9/2(21Tv'2) 

+ 2-9/439/2K9/Z(31Ti2) 

- 227/4K9/Z(41Tv'2) + 2.1O-9 / 4K 9 / 2(1Tv'Th) + ... ] 

= 40. 3043. 

C. The ZnS structure 

The negative ions lie at the sites (m/2, n/2, p/2) with 
m + n + p even. The positive ions lie at the sites (m /2 
+ 1/4, n/2 + 1/4, p/2 + 1/4) with the same condition. 

1. The Madelung constant 0; (ZnS) 
+'" 

o;(ZnS) =2:) 2:) 2:)' {12[(4m + 1)2+ (4n + 3)2+ (4p + 3)2r1/2 
-'" 

+ 4[(4m + 1)2 + (4n + 1)2 + (4p + 1)2]-1/2 

_ (m2 + nZ + p2r1/2 _ 6[ 4m2 + (2n + 1)2 

+ (2p + 1)2]-1/2)-. 

The two first terms can be transformed together into 
LL ;L16[(2m + 1)2 + (2n + 1)2 + (2p + 1)2]-1/Z 
== 2LL::L[(2m + 1)2 + (2n + 1)2 + (2p + 1)2]-1/2 through sim
ple arithmetical devices. We find that 

+'" 
o;(ZnS) = a(CsCl) - 62:) 2:) 2:) [4m2 + (2n + 1)2 + (2p + 1)2]-1/2. 

-'" 

The triple series will be evaluated in Sec. III. C 2 for a 
general exponent s. Here we take the limit when s tends 
to 1/2. We find: 

a( ZnS) = a(CsCI) + 3ln2 - 48[Ko( 1Ti2) + K o(21Ti2) + 2Ko( 1Tv'IO) 

+ 2Ko( 1T1i8) + 2Ko( 1T126) + .•• ] 

= 3. 782926. 

This simple formula gives a with seven significant 
figures! 

2. Calculation of M 2s (ZnS) 

Using the arithmetical devices used in Sec. III C. 1, 
Mas is easily brought into the form 

Mas(ZnS) = 2:) ~ 2:)' {24s-1[(2m + 1)2 + (2n + 1)2 + (2p + 1)2]-s 
-'" 

+ (m2 + n2 + p2ts + 3. 2as[4mZ + (2n + 1)2 

+ (2p + 1)2rs} 
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+~ 

+ 3. 220 E E E[ 4m2+ (2n + 1)2 + (2p + 1)2]-s. 
-~ 

The triple series can be evaluated as above. One 
finds 

[21-201T1/2/r(s)]~ E (Qs_1/z{(2n + 1)2 + (2p + 1)2]1/2} 
-~ 

Finally, one has 

M2o(ZnS) = 22o-1M2o(CsCl) - (220-1_ 1)M2o(NaCl) 

+ 31T1/Z2s+3/Z(1_ 21/ 2-8 ) 

[r(s -1/2)/r(s)]l;(s -1/2)/3(s -1/2) 
~ 

+ 3[2s+7 / Zr /r(s)]E E[(2n + 1)2 
o 

+ (2p + 1)Z](1-2o>/4(Ks_1/Z{1T[(2n + 1)2 

+ (2p + 1)2]1 12} + 28 -
1 I ZKs_1 12{21T[(2n + 1)2 

+(2p+l)Z]1/2}+ ••• ). 

Numerical example: 

MlO(ZnS) = 512MlO(CsCl) - 51lM10(NaCl) 

+ (1051T/32)(16v'2-1)l;(9/2)/3(9/2) 

+ 321T5v'2[2-9/4K9/Z(1T.f2) + 29/4K9/Z(21T.f2) 

+ 2-9/439/2K9/Z(31T.f2) + 2Z7/4K9/2(41Tv'2) 

+ 2.10-9 / 4K 9 / z(1Tv'IO) + ... ] 

=17740. 

D. Refinement of the above results 

The evaluation of M20 and a has been performed in a 
satisfactory way: the calculations are neat and the final 
results are expressed in the form of very quickly con
vergent series. However tables of the Ks functions are 
needed. When s = n + t (n integer), the tabulation is 
easily performed since Kn+1 12 is an elementary function 
(product of an exponential by a polynomial). When s = n 
(integer), the problem is less simple. If a relative 
accuracy of about 10-6 is judged sufficient, one can use 
Watson's tableS (with seven figures). In practice, this 
accuracy is quite sufficient. However it is possible to 
refine the results by expressing a and M20 in terms of 
elementary functions only. This statement is obvious in 
the case of M20 provided s=n is an integer. If s=n+t 
we shall see that this is also true. Now we present the 
refined method and we apply it to the evaluation of a. If 
s 7- n or n + t, the problem is not soluble in terms of 
elementary functions; since Ks is not tabulated in these 
cases the evaluation of M20 would require further inves
tigation. Fortunately the two possibilites s = n or s = n 
+ t are in practice quite sufficient. So we try to refine 
the previous result: 

a(NaCl) = 21n2 + 4~ E'(- l)m+n+1{Ko[1T(m2 +nZ)1/2] 
-~ 

First, we calculate: 
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+~ , 

S(z) = E E (_ 1)m+n+1Ko[z(m2 + nZ)l IZ]. (13) 
-~ 

We show that the use of Schlomilch series allows us to 
transform (13). We have 

S(Z)=~6'=Sl+S2=2t.1n~'" +2t.i (m=O). 

To calculate S17 we start with the formula 

which is introduced in the definition of Sl: a Schlomilch 
series immediately appears which is summed according
ly to (4): 

Sl = 2t.i (- 1)m+1 2m 1 ~ !o(t)(tZ + ZZ)"l/Z K1[m(tZ + Z2)1/2]t dt. 

Using Eq. (4), we find a development with integrals of 
the type: 

J ~ (u2 + z2)"1/ zKl[m(uZ + Z2)1/2] du = (1T/2mz) exp( - mz). 
o 

We get: 

f (_1)nKo[z(mZ+n2)1/2]=21T{(z2+ 1TZ)-1/2 
n=-IIO 

x exp[ _ m(z2 + 1TZ)l/Z] 

+ (Z2 + 91T2)-1/2 exp[ _ m(zZ + 91T2~ 12] + ••• } 

and finally 

~ 

Sl(Z) = 41T6 [ZZ + (2k + l)Z1TZ]-l IZ {exp[z2 + (2k + l)Z1TZ]l/Z 
k=O 

+ 1}-1. 

SZ(z) is evaluated by means of a similar technique (see 
Appendix A). The final result expresses a(NaCI) in 
terms of elementary functions [except for the use of 
l;(1/2) and /3(1/2) which are tabulated]: 

a(NaCI) = 4(1- 2l/Z)l;(1/2)/3(1/2) 
~ 

+ 16 6 6 [(2l + 1)2 + (2k + 1)2]-1/2 
k.I=O 

This expansion exhibits remarkable convergence; eight 
terms give a with twelve figures! : 

a (NaCO = 1. 74756459463. 

Note that one term gives a correct with four figures: 

a(NaCl) =4(1- 21/Z)1;(1/2)/3(1/2) + 16. 2-1 12[exp(1T21 12) 

+ 1]-1 = 1. 747. 

Of course the same procedure gives the values of 
a(CsCl) and a(ZnS) (see Appendix B for more details): 

'" 
a(CsCI) = 2a(NaCI) - 126(2l- 1)"1 csch(2l- 1)1T 

/=1 
~ 

_ 24 66[2l- 1)2+ k2]-1/2csch1T[(2l_1)z+ k2]1/2 
11,1.1 

= 2. 035 361 50945, (15) 
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'" 
a(ZnS) = a(CsCl) + 3ln2 - 66 Z-1 csch(l1T) 

1 =1 
'" 

+ 12 L) L) (- l)k+l(kZ + lZt1/Z csch[ 1T(kZ + lZ) lIZ] 
k ,I =1 

= 3. 782 92610408. 

In the special case of the NaCI structure, the refined 
result might be derived from Poisson's double summa
tion formula. 13 

E. The exp(-ar)!r potential 

The same method applies when more complicated lat
tice sums must be evaluated. Let us examine the im
portant case where the interaction is of the type 
exp(-ar)/r. We must calculate (a>O): 

s=L) ~ L)'r-1 exp(- arlo 
-'" 

We calculate this sum in the NaCI structure. We start 
with the formula 

We set x=p and y=(mZ+n2)1/Z (with the notation of Sec. 
m. A. 1). We obtain 

S = L) ~ L)' So '" t(f2 + a2tl/2Jo(pt) exp[ _ (m2 + n2)1/2 

x (fz + a2) 1/2] dt. 

The sum splits into two parts: 

In the first term a Schlomilch series appears which is 
summed in accordance with (5). The second term is 
easily summed by elementary manipulations on geo
metric progressions. We find 

S = - 21n[ 1- exp(- a)] + 2.0E '{Ko[a(mZ + nZ)l/Z] 
_00 

+ 2Ko[(aZ + 41TZ)1/Z(mZ + nZ)1/2] 

+ 2Ko[(aZ + 161TZ)1/2(mZ + nZ)1/2] + •.• }. 

This series quickly converges through the whole range 
of a values. The use of the Ko function may be avoided 
by using the procedure described in Sec. m.D. One 
finds 

s= (41T/ a) [expa - 1]-1 + 161T L) L)[aZ + (2k7T)Z + (211T)Zr1/Z 
1 0 

x{ exp[aZ + (2k1T)Z + (211T)Z]1/Z _ 1r1 

'" + 4 L) L)(m2 + n2t 1/2 exp[ _ a(m2+ nZ)1/2] 
1 

When a is small, the behavior of the last term has been 
studied by Glasser6 who gives its approximate value. 
The other terms are easily evaluated since they involve 
only elementary functions. 
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It is interesting to compare the various numerical a 
values occurring in the literature since they do not al
ways coincide! Let us consider the most important 
example: a(NaCI). Most of the authors give the value 
1. 7476 in their textbooks on solid state physics. Kittelll 

and Dekker12 give more accurate values: 1. 747 558. They 
obtained that value from the classical paper of 
Shermann. 13 Comparing with our result, we note a dis
crepancy of 6.10-6 • Sakamoto14 and earlier Emersleben15 

have calculated the same quantity by Ewald's method; 
they have found a value in agreement with ours. The 
same remark holds for CsCI: the traditional valuell ,lZ,13 
is 2.035356 but we find 2.035361. For ZnS the litera
ture is less accurate (3.78292) so that the discrepancy 
does not exist. 

V. CONCLUSIONS 

It is possible to reformulate the above theory by using 
the language of the theory of integral transforms. 10 
Having to sum the series S = I~(±)u(z), we introduce the 
Hankel transform (or order s) of the function z'u(z): 

F(t) = J '" z J.(zt)z'u(z) dz. 
o 

The inversion theorem tells us that 

z'u(z) = fo'" t J.(zt)F(t) dt. 

After slight manipulation we can write 

S = 2-'1'" t·+1 [~(±)J.(zt) /(zt/2)jF(t) dt. 

A SchlOmilch series appears which is summed accord
ing to (4) or (5). Performing the integration, the final 
result takes the form of a new series whose conver
gence may be improved with respect to the convergence 
of I(±)u(z). This paper has shown by several classical 
examples that the method is effective and useful. It fur
nishes a very good method for computing lattice sums 
in ionic crystals. No other method gives simple re-
sults as in Eqs. (14)-(16) with such an accuracy. Among 
all the existing methods leading to the evaluation of very 
accurate lattice sums, this method appears to be one of 
the simplest. 

Very recently we have further refined the above re
sults, In particular, the use of Schlomilch series al
lows us to find numerous summation formulas for K. 
functions like those described in Appendix B. Calcula
tions and related applications will be reported in a fu
ture paper. A possible application is the expression of a 
in term of elementary functions only (without reference 
to the zeta and the beta function of Riemann). 

Example: One has the curious formula 

a(NaCl) = (9/2)ln2- (1T/2) 

'" + 12L) L) {[(2j - 1)2 + (2k _ 1)2]-1/2 
1 

XCSCh1T[(2j_l)Z+(2k_1)Z]1/Z 

_ (4jZ + 1kZt 1/Z csch1T(4j2 + 4k2)1/2}. 

Four terms give: 
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(9/2) In2 - (11/2) + (12v'2) csch11v'2 - (12/VS) csch11VS 

+ (24~) csch11.fTh= 1. 747 56(28) 

accurate to 10-6 • 

Similar formulas hold for the other crystallographic 
structures. They will be reported in a future paper with 
other possible applications. 

APPENDIX A 

Certain double series containing Ks functions can be 
summed exactly in terms of Riemann zeta and beta 
functions. If s > 0 one has 

'" 6 6(- 1)m+lml/2-S (21_ W-l/2Ks_1/2[21- 1) m11] 
l,m=1 

The proof of this formula is left to the reader. He will 
start with the formula6 

'" 
6 6(- 1)m+n(m2 + n2t s = (1- 21- 2s)t(2s) - (1- 21-S )t!(s)t(s). 
m,n=1 

He will evaluate the double series by the new method. 
The result will follow. This series occurs in the evalua
tion of a(NaCI) (with s = 1/2). 

APPENDIX B 

USing the method presented in Sec. III. D, the reader 
will have no difficulty to prove that 
+'" 

6 6 Ko{z[4m2 + (2n + 1)2]l/2}= (11/2z) cschz 
-~ 
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'" + 11 6 (Z2 + k 2112t l / 2 csch(z2 + k2112)l/2 
k=l 

and that 

'" 
6 6Ko{z[(2m + 1)2 + (2n + 1)2]1/2} 

o 
'" 

= (11/8z) cschz - (11/4) 6( _ 1)k+l(Z2 + k 2112t 1/2 
k=l 

The first equation leads to the refined value of a(CsCI) 
while the second leads to a( znS) . 

* Presently Professor at the National University of Zaire, 
Kinshasa. 
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