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Abstract. We show that, contrarily to what Flessas and Anagnostatos claim in a recent
Letter to the Editor of this Journal, the so-called Hill determinant method is perfectly
suited to the numerical resolution of Schrodinger's equation.

1. Introduction

Recently Flessas and Anagnostatos (1982) claimed that the Hill determinant (HD)
method was unable to furnish the correct spectrum of Schrdodinger’s equation. We
intend to show that their argument is based on an inaccurate analysis of the problem
so that their conclusions appear as completely misleading. It must be pointed out
that two papers (Flessas 1979, 1981) dealing with the rotating harmonic oscillator
have been similarly criticised by Froman er al (1980) and Karlsson er al (1982).

2. The D method

In order to clarify our argument we shall concentrate on the example treated by
Flessas and Anagnostatos (1982), i.e. the calculation of the eigenvalues of the anhar-
monic oscillator:

U +H(E-x*=Axhe =0. (1)

We try the solution by setting
v =exp(-wx?) ¥ Cux** (2)
k=0

(even states only; the odd states are treated similarly). It immediately follows that
the Ci obey the third-order recurrence relation

(2k +1)(2k +2)Ci 41+ (E — 20 — 8wk)Cy + (40’ —1)Cy 1 —ACi 2=0 (3)
withC_,=C_,=C_;=...=0and k =0,1,2,.... Therole played by the pzrameter
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w will be mentioned later. The HD method as presented by Biswas er al (1971, 1973)
consists of rewriting the recurrence in the form of an infinite linear homogeneous
system with the unknowns C,, C,, C,, ... and then equating to zero the determinant
D of the corresponding infinite matrix. That equation may be written as

E-2w 2
40’-1 E-10w 12

—A 40’-1 E-18w 30
D= -A 40’-1 E-260 56 =0.

The numerical calculation of the roots of D is performed by truncating D to its
kth-order approximant D’ and calculating the limit of the roots of D*’ when k
tends to infinity. Banerjee (1978, 1979) first observed that the numerical value given
to the dummy parameter w has a great influence on the rapidity of the convergence
process. It immediately appeared that the value w =3 chosen by Biswas et al (1971,
1973) was far from optimal. Hautot and Magnus (1979) explained that phenomenon
and presented accurate theoretical estimates for the best w values. Flessas and
Anagnostatos (1982) contest the validity of the method: they claim that the calculated
Ci do not necessarily lead to a square integrable function ¢ =exp(—wx”) T Cex >~
However, we now proceed to show that they really do. A simple examination of
recurrence (3) led Flessas and Anagnostatos to the conclusion that

Cis1/Ci ~(A/4kP)'?

(equation (7) of their paper (1982) where w =3 for the sake of simplicity). Then they
crudely summed that asymptotic formula between 1 and k to obtain the following
(wrong) asymptotic expression for Cy:

Ci~ (Af4]k'f3/k 12/3.

Then introducing those C, in (2) they arrived at the conclusion that the resulting
became unphysical when A >0.5. They therefore concluded the invalidity of the whole
method described by Biswas er al (1971, 1973). That line of argument is erroneous
because the correct asymptotic behaviour of Cy is quite different. The correct approach
to the problem is as follows: recurrences like (3) have been studied by Birkhoff (1930)
and Birkhoff and Trjitzinsky (1933) who showed that their solutions are asymptotic
to expressions of the type k*a" explak™ +Bk" +...)(In k)". Denef and Piessens (1974)
have shown how to calculate the coefficients a, w, @, B, . . . which are present in these
asymptotic scales and Hautot and Ploumhans (1979) have published extended tables
of coeflicients which are useful in practical examples. If we apply that procedure to
our recurrence (3) we find that three independent solutions are asymptotic to

_[expQimi/3)A'2/9'7)" -
T(2k/3)

7%2""3(4@2_3)*_Zfscﬂﬂujklﬁ‘], I‘=0, 1’ 2’ {4)

1 2/3, —1/3 _dinl, 3
ci explw2?/2A V3 432/
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It is easily shown that C}” is dominant when & is large and that both cy and

C{? are dominated: |C|>|C}"|~|C\Z’|. The general solution of recurrence (3) is
therefore asymptotic to a linear combination of the cds

Ck"‘"ﬂC:(m +,6’C§(” +‘YC5(2)

where a, B and y depend on E and on the initial conditions. We note that Cy is
generally asymptotic to C}”’ except if a@ = 0.

A simple inspection of recurrence (3) shows that the limiting conditions C_,, =0
(n=1,2,...) are automatically fulfilled if one chooses C_; = C_, =0 so that «, 8 and
v are defined as functions of E except for an unimportant multiplicative constant.
When E is taken at an arbitrary value a does not generally vanish and the correspond-
ing Cy are dominant; when E is equal to well chosen values then « (E) vanishes and
the corresponding C, are subdominant. Now let us recall that Schrédinger’s equation
(1) has two linearly independant solutions which are asymptotic to

dai~ x| T exp(Ax[*/3),
Yeonv~|x| " exp(—A"*|x[|*/3)

in each sector of the complex plane (Sibuya 1975).

When E is chosen arbitrarily the ¢ function which vanishes at x = +00 generally
diverges at x = —00. However, for well selected E values the same function is well
behaved at x = +00 and x = —00: these are the eigenvalues of the problem. If we recall
the starting expansion set for ¢, i.e. ¢ = exp(—wx 2) =% 2", it appears that (..., and
fgiv are respectively generated by subdominant and dominant C, sequences (a direct
proof is reported in the appendix). From that viewpoint the quantised values of the
energy parameter E are those for which a subdominant sequence C; exists which is
characterised by the initial conditions C_,, = 0: the resulting generated ¢ function will
behave like ¢ .on at x = +00 and also at x = —o0 because of the even parity of the
expression which defines ¢ in terms of the C.. We may express this in other words:
the minimal (distinguished) solution of the recurrence generates the minimal (distin-
guished) solution of the associated differential equation. Because we need to determine
a subdominant solution of the starting recurrence we now turn to its practical calcula-
tion through the generalised Miller algorithm.

Let us consider a linear homogeneous recurrence of order n written as

AP G AL VE AT G0 =0,

Let us consider a fundamental system of n independent solutions whose asymptotic
behaviours are contrasted with the maximum. For k sufficiently large one has

CP = le2=. .. =|ci]

It is well known (see e.g. Gautschi 1967) that the forward recursion is convenient for
the stable numerical calculation of the dominant solution Cy’ while the backward
recursion stably calculates the dominated C{'’. That procedure is known as Miller’s
algorithm (Miller 1952). The stable calculation of the intermediate solutions

i) ... C¥ "+is only possible through a generalised algorithm which has been studied

by Oliver (1968). To calculate C§’ (i€(1,...,n)) one has to solve the following
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linear system:

S| |Aartt Al Cy
ik T 0 C,
Ay e AP e BEY
Al AT A,
AR
0 AR e AR Ck
nofe2

ATC_ 4+ s+ AING
AT+, ARG

n—i+l

AD,C,

0
The value of K must be chosen large enough to ensure the required number nb of
significant figures in CY" ... C} :

nb ~logilCk "'CL/CRCY™)| 5)
A good estimate of K is generally obtained if C§’ is replaced by its asymptotic
behaviour in (5).

Applying that algorithm to our problem in the case i =2 (since we are only
interested in a subdominant solution), we obtain the linear system

E-2w 2 Co (4w’ -1)C_;—AC_,
dw’ -1 E-10w 12 8 -AC_,
-A 40’-1 E-18w 30 Gy 0
2K(2K —1)
-A (40’-1) E-2w-80K||Ck 0

If we now impose the initial conditions C_; = C_, = 0 we retrieve a linear homogeneous
system. Its nontrivial solution exists if and only if we require the vanishing of its
determinant which is nothing other than the HD of the problem.

In summary, we have shown that equating the HD to zero is equivalent to searching
for the subdominant solution of the associated recurrence compatible with C_, =0
(n =1, 2,...). That minimal solution is precisely the one which generates the minimal
solution of the corresponding Schrodinger equation.

3. Discussion and conclusion

It is interesting to try to understand how HDM works. First of all we notice that
Schrédinger’s equation (1) is of order two while the associated recurrence (3) is of
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order three, so there is no one-to-one correspondence between the solutions of (1)
and (3). In fact, simple algebraical calculations indicate that the ¢ function defined
by (2) with the C; solutions of recurrence (3) obeys the following non-homogeneous
differential equation:

"+ (E -x = Ax W =[AC_; +AC_1x> - (40’ —1)C_,] exp(—wx?).

This equation coincides with the starting equation (1) if and only if we impose
C_,=C_,=0. However, if we impose three initial conditions C_,=C_;=0and Cp =1
(this last value being inessential) on the solution of a third-order recurrence like (3),
we generate a dominant sequence C unless E takes one of those well selected values
for which a subdominant solution of (3) exists characterised by C_, =C_, =0. Those
values are precisely the eigenvalues of the problem since a dominant solution of (3)
is unable to generate the required minimal solution of (1). In other words, recurrence
(3) possesses a subdominant solution, for any E, but with non-vanishing starting values
C , and C ;. The eigenvalues are precisely found when the extra conditions C_, =
C_,=0 are fulfilled. The correct interpretation to be given to HDM is therefore not
to express a consistency condition on the infinite linear homogeneous system (3) as
initially thought by Biswas et al (1971), but to get a finite approximation to a
subdominant solution of the recurrence relation (3) which is consistent with the
initialisation C_;=C_,=0.

Once the eigenvalues E have been determined the sequence C, may be computed
through the recursive scheme (3). However, great care must be taken not to use the
simple forward recursion which is unstable for subdominant solutions (Gautschi 1967).
Table 1 clearly illustrates that point where the correct values are given by the
generalised Miller algorithm.

In conclusion, there is no reason to doubt that HDM leads to the correct eigenvalue
spectrum in the case of anharmonic oscillators. We have tested many of them (Hautot
and Magnus 1979) up to x 2+ Ax'? without encountering any difficulties; the calculated
wavefunctions always exhibit the expected asymptotic behaviour at large x. The.
eigenvalues coincide with those which can be obtained by a simple method due to
Killingbeck (1981) which discusses the changes of sign of ¢(E, x) (for x large) when
E increases and passes through an eigenvalue. It is remarkable that the same eigen-
values are obtained when the same discussion is made on C,(E) (for n large).

Appendix

Here we use a direct method to demonstrate that the dominant (subdominant) solution
of recurrence (3) generates a @aiv (Ycony) function.
Using the asymptotic behaviour of the C, we may write (/=0, 1, 2)

a0

1,"1{” =Yy i exp(—wx*)x 2k ~Y exp(—wx Ha*k A3 ek exp(bk 2/3_ ek %) /T (2k/3)

k=0
where we have set for the sake of brevity

a =exp(2iml/3)A3/9', b=w2"A"""? exp(dini/3),
¢ =221 (4w*-3) exp(2iml/3)/6.
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Table 1. (a) Wrong Cy-values calculated (with six significant figures) through the simple
forward recursion (3). The initial error (~107%)is dramatically amplified so that for k > 25
the C; become dominant, i.e. of unique sign. The number 25 is unimportant: it depends
on the number of significant figures used in the calculation. (b) Correct Cy-values calculated
through the generalised Miller algorithm. Note the expected alternation of signs. We
have chosen C; =1 in both cases.

k Crkth! C‘(lbi k Ck““ Ch”:”
1 ~1.209E - 01 ~1.209E - 01 21 —3.310E-23 —5.820E-23
2 ~-3.787E-02 ~3.787E-02 22 —~4.764E - 24 -6.791E—24
3 6.873E - 03 6.873E - 03 23 5.738E-25 4.154E-25
4 3.634E-04 3.634E-04 24 1.600E - 26 3.996E-27
5 —~1.468E—-04 —~1.468E-04 25 —~3.469E-28 -1.230E-27
6 4.066E - 06 4.063E - 06 26 9.513E-29 3.205E-29
7 1.529E - 06 1.529E - 06 27 6.244E - 30 1.860E—30
8 ~1.289E-07 -1.290E - 07 28 1.622E - 31 —~1.346E-31
9 ~6.735E-09 ~6.747E - 09 29 1.987E -32 2.992E—34
10 1.378E-09 1.377E-09 30 1.532E-33 2.725E-34
11 -2.090E-11 ~2.113E-11 31 6.994F - 35 —-9.159E—-36
12 -7.757E-12 -7.786E - 12 32 4.611E-36 ~2.440E-37
13 4.903E-13 4.868E 13 33 3.158E-37 2.449E 38
14 1.974E - 14 1.936E - 14 34 1.681E - 38 ~2.968E—40
15 ~-3.193E-15 -3.234E-15 35 9.498E — 40 —3.360E—41
16 5.479E - 17 5.057E-17 36 5.686E —41 1.477TE—42
17 1.191E-17 1.150E—17 37 3.069E —42 1.184E — 44
18 -6.263E-19 -6.649E — 19 38 1.629E —43 ~2.641E—45
19 —1.248E-20 ~1.595E-20 39 8.849E—45 5.623E—47
20 3.212E-21 2.912E-21

That series for ¢ is asymptotic to the following integral (x large):

1;3) dz
rQz/3)

Such an integral can be evaluated by the saddle point method:

—4/3 2 2 2/3
¢{"~Jazz Bx?2 exp(—wx*+ bz —cz

[ exp 2 dz ~ (2m/ 12 %) exp fi2)

where the saddle point z* is defined by the equation f'(z*) = 0. In our case we have
used Stirling’s formula:

23 . _1/3

f(z)=—wx*+2z Inx+{+In[a 3Pz -2lnz-3zInz+bz cz

The unique saddle point of f is easily deduced asymptotic to
2%~3g3/%%3,
Then we obtain the final result:
¢~ (=2m/f" (%)) exp f(z*)
~x"exp(xA'?x?/3) (x ~+00)

where the + sign corresponds to the case /=0 (dominant Cy: ¢ ~¢q;,) and the —
sign corresponds to both cases [ = 1, 2 (subdominant Cj: U ~Weon).
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