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GENERALITA

The two-body relativistic interaction
in recursive dynamics.

ANDRE HAUTOT (¥)

SUMMARY. - Recursive dynanmiics allows an accurate numerical resolution of the relativistic
two-body problem. That is i contrast with the dassical theory, which is only able to write
an imextricable system of difference-differential equations.

1. Introduction

Four fundamental interactions are known in physics: gravitational, elec-
tromagnetic, strong and weak. In each case, the two-body interaction is
expected to play the central role. Surprisingly enough, that fundamental
problem has never been solved accurately neither theoretically nor numeri-
cally,. Of course, an exact solution of the gravitational problem has been
found in the Newtonian limit but no equivalent solution is known in the
frame of the special theory of relativity (1). Only very special cases have
been investigated: the classical case of an infinitely heavy centre and the
case of concentric circular trajectories (2). In the general case, the calcula-
tions are so intricate that there is little hope to solve them one day even
numerically. Solutions to the equations of such a fundamental problem
cannot be obtained indicating that something is wrong in the traditional
approach of the fundamental interaction problem.

The two-body problem is classically solved without difficulty in the
Newtonian limit, which is based on the concept of instantaneous force.
This approximation is acceptable on the scale of our solar system, however
the weakness of the method is that interaction cannot propagate with an
infinite speed. The replacement of the instaneous force by a time-delayed
force is known to lead to an unstable model (3) so that there is no hope to
save the Newtonian picture.
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What we said about the gravitational interaction is also true with the
electromagnetic interaction. In fact, the situation is even worse in that case.
Because the Maxwell equations are naturally relativistically invariant, the
theory of special relativity might be considered as their natural frame.
Unfortunately no satisfactory solution can be found because of two major
objections:

— If Maxwell’s theory of electromagnetism accurately describes the
behaviour of the electromagnetic field in vacuum, difficulties, first
pointed out by Feynmann and Wheeler, arise when one tries to calcu-
late the trajectories of charged particles in these fields. One finds, for
example, that an electron moving in the field of another charged
particle would experience a self-acceleration as the consequence of the
retarded interaction. A disturbing consequence is the well-known insta-
bility of the relativistic two-body system. Feynmann and Wheeler have
tried to remove the difficulty by modifying the Maxwell-Lorentz equa-
tions. However their idea which consists in mixing, in equal propor-
tions, advanced and retarded interactions seems almost an ad hoc trick.

—  Even if one adopts the ideas of these authors, the problem remain
completely unsolvable, even numerically, because of the high complex-
ity of the difference-differential equations which describe the system.

The current models being highly unsatisfactory, this paper reports an
improved model, which leads to a better understanding of the mechanism
of the two-body interaction.

The origin of the above mentioned troubles is believed to be found in
the bad idea of having generalised in electromagnetism the concept of force
which is inheritited from Newton’s mechanics. It is our purpose to show
that a completely different approach might avoid all those difficulties. We
first recall the fundamental principles of a new methodology already pre-
sented in two previous papers (4, 5) dealing with the special case of the
one-dimensional motion. Then we shall write and analyse the equations of
motion in the general case.

2. The general picture of the two-body interaction in recursive dynamics.

Two interacting particles, of respective rest masses, » and »/, are
located at the positions, 7, and 77, at the initial time, #=¢7. They initially
present positive (resp. negative) mass deviations, 8, and &/, in the case of a
repulsive (resp. attractive) interaction, so that their initial dynamical masses
are respectively equal to »z+6, and #'+8’.
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When the particles are released, with initial momenta f, and p;, they
each immediately emit a positive (resp. negative) energy photon in the
direction € and €’ of the future position of the other particle, of such
positive (resp. negative) frequencies, v, and v/, that they instantaneously
recover their original rest mass. The momentum of each of the particles
suddenly changes in agreement with the momentum conservation law and
their new values are denoted %, and #’. Each particle absorbs the photon
emitted by his partner and then reemits a new photon in the direction of
its future position. A repulsive (resp. attractive) motion results from the
laws of conservation of energy and momentum. Each particle experiences
successive cycles, emission and absoption, without interruption. Figure 1
shows the i™ cycle.

3. The equations of motion.

The complete equations of motion are easily written as:
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The motion is confined in the plane defined by the initial position
vectors, 7, and 7. Each vector has only two non-vanishing components and
the vectors, 6!” “and € . are unitary. Equations [lab] to [6ab] form a
recursive system equwalent to 20 scalar equations. The unknowns are the

(i+1)-indexed variables and they may be divided in two categones 12 state
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an algebraic system might appear formidable task. However it is easily
shown that a numerical solution is possible by programming the complete
system in the FindRoot instruction of Wolfram’s Mathematica language (6).
The resolution requires the knowledge of twelve initial conditions corre-
sponding to the state variables set. This poses no problem except for the
mass deviations 8 and & Their global intensity, 8+8/, clearly depends of
the strength of the couplmg between the interacting particles but it is not
clear how one should share it between the two particles.

This difficult problem will be refered as «the sharing law problem»
and remains open because of a lack of information which is probably
related to the generalisation of the third Newton’s law. The fact that action
and reaction are no more opposite in the general case does not simplify the
task. In this paper, we prove the relativistic invariance of the fundamental
equations and we solve the problem of the sharing law in the Newtonian
limit. It is hoped that the general sharing law will be soon discovered
leading to the complete — at least numerical - solution of the general two-
body interaction in both gravitational and electromagnetic cases.
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4. The relativistic invariance of the equations of motion.

The relativistic invariance of the equations of motion is most easily
verified after their transcription in the formalism of quadrivectors. In the
following, we label eight 4-vectors by a capital letter, namely:

H:(nx,n_\,,nz,\"m2+n2)
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With these notations, the system may be rewritten in a condensed
form. Separating the kinematical and the dynamical equations leads to:
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Let us now consider a simple Lorentz transform with the relative
velocity, #, of the observer parallel to the x-axis. If the notation g* is
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adopted for a variable ¢ when it is viewed by the moving observer, it is
well known that the transformation law of quadrivectors is written as:

VE=TV
ith
wit B 0 0 —Bu
T= 0 1 0 0
0 010
—Bu 0 0P
where Bo1/ 1_'“;

The dynamical equations are obviously invariant and consequently clas-
sical formulas of the Déppler effect or of the aberration effect can be
observed: )

v =Bv(1-ul,)
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Similar formulas are retrieved for the m-momenta of the particles:
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The invariance of the kinematical equations is less immediate. It is the

consequence of the following relations, which are easily derived from the
Lorentz transformation:
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The crucial point is that the transformation laws for the p-momenta
are written as

. | : 5
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A little algebra then leads to the conclusion that the mass deviations
are relativistically invariant, i.e., 8*=8. In other words, the sharing law must
be relativistically invariant as expected for a true law. Its general form is
however not known because of the complexity of the fundamental system.
Tt is known that a dynamical problem is solved when one succeeds to find
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all its dynamical invariants. A system like equations 1 to 6 possesses twelve
degrees of freedom corresponding to the twelve initial conditions, which are
necessary for its solution. Each initial condition may be considered as a
potential non-autonomous (i.e. time dependent) invariant. Eliminating the time
between all of them leads to, at least in principle, eleven autonomous invari-
ants, Invariants such as energy and angular momentum are immediate but the
remaining invariants cannot be found without an in-depth analysis of the
whole system. The problem is so difficult than it shall remain partially open.

5. Elementary constants of the motion.

The simple inspection of the equations of evolution reveals, more or less
evidently, the existence of four constants of the motion, which are the total
energy, the total momentum, the total angular momentum and the velocity of
the energy centre of the system, which will be discussed here below.

a) The total momentum of the system is conserved according one of the
equivalent expressions:
- et s = ] r e i D
(7] Pitp; =R+ AV b Vi =P
A natural consequence is that the equations are simpler if one works

in the zero-momentum frame (ZMF), in which P=0.

b) The total energy is also obviously conserved in agreement with:

w,+w] =\ (m+8,2+p? +fim +8))2 + p?

(8]
: 2 2 2 32 o
=v,—+1+v,-+1+\fm +T, +\/m +M =

¢) The total angular momentum, J, is also conserved and can be written as:
g X =]

Equ. [9] is less obvious and can be demonstrated by calculating suc-
cessively Eq. 10:

B X By /X Pl = VB X iy 47 X Ty + Vi F/X E;ﬂ X Ty
[10] 7y X Pigy #7141 X Biat = ViarTiay X By +Eigg Xy +
VT X Loy 7 X Ty
The difference of these equations leads to a vanishing result because

of equations [3] and [4].

d) Another constant of the motion is associated to the uniform rectilinear
motion of the centre of energy (CE) of the system. A correct definition of the
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CE is possible in this model because the positions of the particles and the
mediating bosons are known at all time. The following quantity is invariant:

= r—= v o
Wi twir = p; - Lpr =

[11]
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That result can be proved by establishing that the following recursion
holds:

= s = L - = Ll _ - _ -t
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To do so each (i+1)-indexed variable must be replaced by its value in
Egs. [3] to [6]. If the origin of the reference axes coincides with the CE,
which is possible with no loss of generality, than the constant vector, &, is
equal to zero.

Five additional autonomous constants of the motion must exist. Some
of them are expected to generalise the well-known Runge-Lenz vector of
the classical Newtonian theory. Their discovery would lead to the complete
analytical solution of the two-body interaction problem. The task is so
difficult that it was left unsolved at this early stage of the study. We now
concentrate on the numerical solution, which is fortunately accessible.

6. Numerical solution of the two-body problem.

Two methods are available: one is semi-analytical and the other is
purely numerical.

6.1 — Semi-analytical method.

Eliminating 7, (resp. #/) between Egs. [la-b] (resp. [2a-b]), one
finds:

Z; ’ Z;
Zwr' - zp; ' lf;'+l 2w: - Zp: i

i+1

[12ab] Vi1 =

where, for the sake of brevity, z and 7', are defined as:
7, =2md,+8° and z/=2m"¥, +8
The following relations are then deduced:
L Qw,=2p; )P = 2k
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In the following step, 7, and 7/ are eliminated between Egs. [3] and

[4]. Then, a simple vector product eliminates the times, ¢, and ¢/ . It only

remains two scalar equations for the director coefficients of the medlatmg

bosons:
(7 =)
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Since the vectors, €+1_(€mp E;.m) and € =(€ -':m) are unitary,
one has two supplcmentary conditions: '
£ -4,y =1 and [ Vi

1=

[18a,b]

. hquanons [16] to [18] form a coupled system for the unknowns, € o
€ f’im, . A classical decoupling procedure leads to four polynormal
equations of degree eight. It can be shown that only one root is convenient
for a complete verification of the fundamental Egs. [1] to [6]. That proce-
dure is however not the simplest available and it may be shown that a

completely numerical approach is quicker.
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6.2 — Purely numerical method.

The fundamental system of Eqs. [1] to [6] may be programmed in
Wolfram’s Mathematica language with the aid of a simple FindRoot instruc-
tion. The solution is quickly computed recursively in a stable way. The final
result may be displayed in any desired way. Here is a numerical example
which considers two interacting particles of respective rest masses 7=1 and
m’'=3. There initial positions, momenta and mass deviations are as follows:

m=1; m'=3; x;=-1; y,=0; x/=—xw/wg y="yw/ws £,=0; £=0;
b, =" =0; p, =0 ~alpha; z;=-2alpha’; z;=m'z/m;
(*Comment: two numerical values of alpha are chosen below®

The initial mass deviations have been shared according to the approxi-

mate law, it

Za = ZU'
n
Modifying that condition would not alter the trajectories very much.
Mathematica is then able to compute the successive positions of both

particles. The corresponding trajectories, in the (x, y) plane are displayed in
two cases, alpha = 1/1000 and alpha = 1/7.

-0.8 ;0.6 -0.4 -0

Fi. 2
alpha=1/1000

Figure 2 corresponds to a non-relativistic system since the ratio v/c is
lower than 10~. One retrieves the Newtonian periodic elliptic trajectories.
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Figure 3 corresponds to a relativistic system since the ratio v/c is of
the order 10°'. Precessing trajectories are found, as expected.

7. The Newtonian limit.

If one agrees that the Newtonian trajectories are valid in the non-relativis-
tic limit, we prove that the approximate sharing law may be written as:

[19] ZE)/Z()Z.W’/??I

Eliminating the p-momenta between equations [I-1a] and [I-1b] and
similarly between equations [2], [5] and [6] leads to four equations:

[ 2 = 7
[20] Z; =2Vf’+l[ Mo E Ty Ty f‘:'+1)

[ 2, 2 7
’ __ r ’ ’ —r ’
(21] z; —2\«'“_1(\]”3 TR~ Ty 'f;+1)
_ ’ 2 2 = o
[22] Zie1 = 2vf+l( moATL TRy :'+1)
-_

) |2 + r2 = 1:'

[23] gy = Vi ™ Tivr — Ty i

Two additional useful relations are:

ro_w [ 2,2 Jﬁ
[24] VitV =W —\m®+mi, —m" +m
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and:
(251 ZW{ViH _Vr'+1} TS i S Z:-rl + Z:-

Eq. [24] is simply the conservation of energy and Eq. [25] is the
consequence of an obvious mixing of Egs. [20] to [24] with [1b] and [2b]
taken into account.

In the low velocity limit it is immediately apparent that the radicals
are the dominant terms in Eqgs. [20] to [24] and that they are of the order
of magnitude of 7 and m’ respectively. One may therefore write:

2 2. _r
(26] M2 =ML T

The same recurrence exactly holds in the one-dimensional case as
shown in our eatlier paper (5). Its solution is easily written in terms of the
initial conditions:

23:/ 25 = 20/ 2o

’ 2k »2
22417 22441 *(m 2o/ m Zu]

At this stage, the problem of the balance between z, and z/| remains
entirely open. We have verified numerically that one retrieves, in the classi-
cal limit, the results of the Newton theory if, and only if, one opts for
what we shall call the classical sharing law:

’

, m
Zp=— 32
bers
This seems to indicate that the simultaneity criterion, 7;=t,, is not
valid as initially thought in the context of the one-dimensional problem.
Both in the classical limit and in the one-dimensional case, the correct
criterion seems to be:

[27] 7= st Z Vi
m
In the general case of higher velocities numerical evidences indicate
that criterion [27] fails. It becomes velocity dependent in some relativisti-
cally invariant way that has not yet been discovered and that leaves the
problem partially open. To solve it, a generalised form of Eq. [27] is
needed, which probably implies the discovery of the complete invariants of

the system.
7. Conclusion
There is a serious perspective to solve the general relativistic two-body

problem in the frame of the recursive dynamics. Though the evolution
equations of the system are rather lengthy, about twenty scalar equations,
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no difficulty has been encountered to solve them, at least numerically. The
only remaining problem is a missing conjecture, which would allow sharing
adequately the global mass defect of the system between the particles. It
has been found that the law,

*

7, =— ZJ’"
m

is consistent with Newton’s third law in the classical limit, and this law is
called the classical sharing law. An in-depth theoretical study of the funda-
mental evolution equations, including a complete discussion of the dynami-
cal invariants of the system, will be necessary to extend the classical sharing
law to the general case.
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