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Unified Interaction Through
Boson Exchange:
an essay on recursive dynamics

ANDRE HAUTOT (*)

SUMMARY. - Boson exchange theory is directly applied to the two-body interaction. We
bave verified the long range 1/r bebaviour of Coulomb’s potential law when the rest
mass of the mediating boson is zero. However, a short range discrepancy has been
obtained and is discussed. We bave also found an unexpected interaction law when the
rest mass of the mediating boson is finite. An application, which concerns Keplerian
motion, is given. This application seems to indicate that recursive dynamics is able to
solve various problems of classical mechanics of the mass point by purely algebraic means.
The extension of the model to the other types of interactions seems possible so that a
door is open in the direction of the unified treatment of the interaction in physics.

I. Introduction

Although this paper might be considered unusual, it leads to a pleasant
pictorial way of describing the two body interaction. Moreover, it allows one
to reconsider our approach of the fundamental laws of physics. Thirdly it
illustrates the power of Mathematica (1) to solve difficult algebraic problems.

Interactions, in classical physics, are usually described in terms of
forces. However, neither atomic nor molecular physics nor cosmology make
use of them. This seems to indicate that the concept of force, though
useful in every day life, is not essential nor indispensable.

For electrodynamics, one generally credits Feynmann with the idea that
any interaction could be seen as the result of the exchange of virtual bosons
(2, 3), ie, in case I, zero rest mass bosons, such as photons or gravitons,
for long-range electrostatic and gravitational interactions and, in case II,
finite rest mass bosons exchange for nuclear short-range interactions. In
short, interacting particles are supposed to repeatedly exchange virtual bosons
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so that they modify their own energy and momentum at each emission or
absorption, in accord with the classical conservation laws of physics.

As is often the case in quantum mechanics, i.e., the well known
example of the spin magnetic moment of a «rotating charged object», such
a naive picture may not be taken too literally. The adjective «virtual»
reminds us that it is not necessary, nor necessarily desirable, to consider
too realistic a model with «small billard balls plying between the interact-
ing particles» (4). Ignoring this warning can lead to serious troubles in
theoretical exposition. An obvious example is furnished by the observation
that positive energy boson exchange automatically results in a net repulsion
between the interacting particles. How then can one reconcile the model
with the possibility of an attraction? The difficulty has been illustrated by
Harney (5) in the context of graviton exchange because imaginary coupling
constants must be introduced in the model.

Since Feynman, many authors have reconsider the quantum theory
of boson exchange, extending the problem to the multi-boson case. The
most recent references may be found in the papers by Sucher (6, 7). For
related works, see also (8, 9).

To our knowledge, nobody has never considered the problem from
the classical point of view. In spite of expected difficulties, we found valu-
able to model the boson exchange in a relativistically invariant way such
that it became possible to at least attain correct asymptotic interaction laws.
This has been done in this paper and we believe that the results are worthy
of interest. Working in one dimension, we have accurately retreived, in case
I, Coulomb’s potential law with its characteristic asymptotic 1/r decrease. We
found, however, a non singular mass-dependent behaviour near the origin
which attracted our attention. In case II, we have found the analytic expres-
sion for the corresponding short-range potential, which, surprisingly, does
not coincide with the Yukawa potential law even in the asymptotic regime.
Various generalizations are considered in more than one dimension.

II-1. Long-range interaction in one dimension
1I-1.1. The principle of long-range repulsion

We first consider the simple example of two point-like, equivalent
sign, charged particles with equal rest masses, . They are temporarily
maintained at rest at a distance of 2x, from each other. Their momentum,
po, is therefore zero. Classical electrostatics considers that they experience a
repulsive force whose value is given by Coulomb’s law,

i, B
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This force is responsible for the accelerated motion of the particles
once released. Another equivalent way of describing the situation is to
consider that each particle carries one-half of the total initial positive poten-
tial energy, Uy, of the system. This energy is given by the classical law,

1 ee

0
4ne, 2x,

When they are released, each particle progressively converts its poten-
tial energy, Uy/2, into kinetic energy, therefore accelerating at a rate pre-
dicted by the laws of motion.

A third possibility, based on Feynmann’s ideas, is now investigated.
We first make the assumption that a positive potential energy, E, is effec-
tively stored in each particle initially at rest in the form of an excess mass
8, = E/c2. We shall see later that E is approximatively equal to Uy/2. The
situation, illustrated in the first line of Fig. 1, is valid at any time /<.

A further assumption is that, when the particles are released at zero
time, fo, they instantancously emit a photon, or a graviton, of such a
frequency, Vi, that they recover their original rest mass, m. Of course, they
automatically experience a recoil with momentum, m;, see Fig. 1. At time
t1>to, both photons simultaneously hit the other particle and are instantane-
ously absorbed. This increases once more the momenta of the particles. A
new cycle, emission plus absorption, can immediately restart. The particles
are thus moving away with an acceleration that we may, in principle,
determine accurately.

m+ 8 (>m) m + 8y (>m)
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Fic. 1

Long range repulsion in one dimension.

1I-1.2. The principle of long-range attraction

The line of argument developed in Section II-1.1 does not seem
suitable to describe an attraction between particles because the boson
exchanges generally entail a recoil of the interactive particles. However, the
description of an attractive interaction becomes possible without altering
the principle of the method, provided one considers that the virtual medi-
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ating bosons may be characterized by negative energies and momenta. For
example, a negative energy photon of negative frequency, v < 0, is charac-
terized by the negative energy, W=hv. Its momentum, g=hv/c, is directly
opposite to its direction of motion, see Fig. 2.

E = hv <o 4
— NN
q=hy e

Fic. 2

The attributes of a negative energy photon.

Paraphrasing Section II-1.1, we again consider the simplified example
of two attracting equal mass particles. They each initially present a nega-
tive mass defect, & < 0, so that their initial effective masses are equal to
m+8. When one releases the particles, they immediately emit a negative
energy photon in the direction of the other particle of such a negative
frequency, vi, that they instantaneously recover their original rest mass. It is
immediately seen that the particles move together rather than apart, see
Fig. 3. This is a consequence of the law of conservation of momentum.

m+8y (<m) m+By (<m)
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Fic. 3

Long range attraction in one dimension.

1I-1.3. The equations of motion in the general one dimensional case

Neither Fig.1 nor Fig. 3 describes the most general case in which
the particles are not initially at rest and their masses are unequal, say
and #’', with #'2m. A prime will, from now on, indicate all the quantities
associated with »’. We have thus modified Fig. 1 for the general case of
unequal masses. This has been done in Fig. 4 which describes, in the zero
momentum frame, a complete two-step repulsive cycle: emission + absorp-
tion + reemission + reabsorption. The reader will observe that we have set
t=t,. This anticipates the simultaneity condition that will be established in
Section II-1.5.
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In order to save space, we have organized the calculations in such a
way that both the repulsive and the attractive case are dealt with simulta-
neously. This requires a carefull discussion of the signs of the various
involved quantities, scalars or vectors. The following settings seem reason-
able; 8 and v are positive scalars in the repulsion problem and negative
scalars otherwise and p, ®, 7 are vectors. The reader must not confuse the
p. component of p, which is an algebraic number, with the modulus, p, of
the same vector which is always positive. For an obvious sake of simplicity,
x will stand for r.
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Long range interaction in the general one-dimensional case.

The calculations are organized as follows. Working in the zero mo-
mentum frame, where p’,+p.; = 0 for all 7, each cycle is described by a
set of recursive equations which express the conservation of energy and
momentum and the propagation law of the photons. Recursive means that,
at each step, the unknown quantities are calculated as functions of the
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same quantities calculated during the previous cycle. In order to lighten
the notation, we choose natural units by setting ¢=h=1 in the equations.
Natural units will be used throughout this paper. Moreover i will system-
atically stand for the unitary vector parallel to Z. Notice that, in one
dimension, there is no difference between m...? and m.,> and that the
same is true with p.? and p2.

A complete cycle is determined by two sets of equations (i = 0, 1,
2, ...). Firstly an «energy-momentum» set,

[(m +8,)° + pf]m = [m2 +1l, ]”2 +Vv,,

[1a, b]
p.\'.i =ﬂx.1+l +v;+[
sz, 2]t PUITIR |
[2a, b] [(m +5") +P’] :[m +ﬂ:r+!] Vi
_px..l =ﬂ:x,r'+l _Vf'+]
2, 2\ PR 106
[3a, b] [m +ﬂ:,+l] +v,, :[{m+5,+]) +pm]
Point =T i1 ~Vin
3 g A2 ) . o, 12
[4a, bl (m +ﬂ;+l] V. =[(m‘ +8,,,) +P;+1]

px..--l = n.r,_r+l + V:+[
and secondly a «space-time» set,

[53 b] X =X, = vx.r-l(!iﬂ _'tx)
Xyt =% = U.t.:—l(f.-#] _'{,.)
[6a, b] X =X, +ia
xr+] :x.: _!rrl +£
where the velocities are related to the momenta by the following way,
. T,
(74, b] O’ + )"
o T,
ot +m))"”?

The solution of equations [1] to [7] is unique provided the following
initial data, the masses m and ', fy=,=0, without loss of generality, and
xy and xy are given. Though the choice of the origin is unimportant it
may be judicious to assimilate it with the correctly defined center of mass
of the system. In this case we denote the initial positions by «cm» sub-
SCripts, X.,0 and x".,o. Are also given, the initial momenta p,, and p’.o=—
p.o, which vanish if the particles are initially at rest and the initial mass
deviations & and &, We expect that the sum of these quantities is nearly
equivalent to the mutual potential energy of the particles in their initial
state, 8y + 0y ~ Uo/ﬁ". But to obtain the exact values of &, and 5’0, we
need a conjecture that will be formulated in Section II-1.5.



Unified Interaction Through Boson exchange: ... 13

II-1.4. The recursive solution of the equations of motion

For the sake of brevity we first define some useful quantities, (7 = 0,
1, ...),

[8a, bl 2=0242md, and z,=8+2m’8’,
[9a, b] W.=[(m+8)4p1"% and Wi =[(n'+8")+p’ ]2

The recursive computation of the solution of equations [1] to [7] is
written as,

Step one, fix initial values for: m, n7', xo, x°o, to, Lo, 80, &0, Pun, P o
Calculate 2o, Z’U, Wg, Wﬁ

Step two, for i = 0, 1, ..., iterate the following six sets of equations.

Set one, solve equations [1] and [2] under the form,

vV, =t
[10a, b] AW, =p.,)
. _ z ;
Vo=
Z(W;.l + px.l)
= —v
[11a, b] E.X‘"“ pf‘"’ o
Mo = Pei TVin

Set two, evaluate the following square roots which appear to be
rational expressions,

m+ (W -p.. )

(m® +m? )7 =
[12a, b) - 2AW,-p,,)
4 . .
X+l 2(1,},’/: + p_'”_)
Set three, solve equations [3b] and [4b] under the form,
N :T[ _vl
[13a, b] Print =g ~Vin
PX--"‘H = T[x.r'+l +VJ‘\"|

and verify that is constant for all 7, zero in the zero momentum frame.

Set four, calculate the following expressions, using eventually equation [12]:

2 2 1/2 .
[14a, b] W, =0m+1 )" +v,,
W= (m” + Eim)t’z +Vi
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2 2 2
Zis1 =W,’”1 =P
[15a, b) T _we 5 5
T = T m = px‘i+l
(16, b] By=mmt i +2,.)"
a, 5 = ' 212
o =—m +(m” +2,,)

Set five, ensure that the energy is conserved under the form,

[17] Wei+ W =W+ Wi=W
Set six, evaluate the velocities, the positions and the times from,
2 2 1/2
[lSa b] i"’l':.r.;+l = Tcx,nl /(!?I + nr’+| )
! ' ' ‘2 2 312
vx.;*—l = nx,;+1 /(m + 7tr-'-l )

[198, b] {xnl =[x1 - L’A‘:rﬂ (xf + tr' - ra )]/(1 -ﬂx.r'+1)

xn—l :[x: + v\‘.r-ﬂ (x; + t; - ta )]/(] +vx..-'+1)

[20a, b] {tm =X T T

Ly =X+ =X

Step three, display the results in the desired way. Examples will be
Figs. 5 and 6.

1I-1.5. The condition of simultaneity

The recursive scheme of Section II-1.4 can only start once the
global initial mass deviation, defined in Section II-1.3, is correctly shared
between the particles under the form &;and &, The problem was immate-
rial in the simplified example because the equality between the masses of
the particles implied, by symmetry, the equipartition & = & But in the
general case of unequal masses we need an additional conjecture.

In fact, if #’>m one has that the recoil velocity, v’;, of #' is less
than that, v, of m. The consequence is that »' will be hit by the photon
earlier than m, in short: #1<¢;. Now we understand that »' will reemit its
photon earlier than m so that it is not clear wether we will have 7, less
than, equal, or greater than £. The most useful case would be that the
equality holds, ie., 7> = .. Precisely we conjecture that both photons must
be reabsorbed simultaneously in the zero momentum frame. We shall show
that this leads to a universal distribution law of the mass deviations 8, and

&0

We postulate that the global initial mass deviation is automatically
shared between the particles, under the form &, and &, in such a way
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that each two-step cycle, as described by Fig. 4, starts and ends simulta-
neously for both particles in the zero momentum frame.

That this simultaneity can hold is not at all evident and its demon-
stration requires an in-depth discussion of equations [1] to [7]. Solving
analytically such a system of fourteen non-linear equations seems a rather
formidable task, however, we have found that Wolfram’s Mathematica (1)
can help in solving them. The equations must be prepared before coding
them in the Mathematica language such that a minimum number of square
roots are calculated in order to shorten the calculation time, to save
memory space, and to avoid sign indeterminacies. The Mathematica pro-
grams are presented hereafter in bold characters with the results following
them. We have used obvious notations such that, pix[i] stands for m.;,
piprx[i] for ., and so on.

The following program writes the space-time equations [5] and [6]
with i replaced by 2/ and 2/+1 successively. It then solves the resulting
system for X».s, Xu2, tio and £ in terms of the same 2i-indiced
variables. It looks then for the necessary condition that =t entails
ta=his2.

pgm1=Solve[{x[2i+1]==x[2il+vx[2i+1](t[2i+1]-t[2i]),
xpr[2i+1]==xpr[2il+vprx[2i+1](tpr[2i+1]-tpr[2i]),
x[2i+1]==xpr[2i]-(t[2i+1]-tpr[2i]) xpr[2i+1]==x[2i]+(tpr[ 2i+1]-t[2i]),
x[2i42]==x[2i+1]4+vx[2i+2](t[2i+2]-t[2i+1]),
xpr[2i+2]==xpr[2i+11+vprx[2i+2](tpr[2i+2]-tpr[2i+1]),
x[2i+2]==xpr[2i+1]-(t[2i4+2]-tpr[2i+1]) ,xpr[2i+2]==x[2i+1]+(tpr[2i+2]-t[2i+1]) },
{x[2i+2],xpr[2i+2],t[2i+2],tpr[2i+2] },{x[2i+1],xpr[2i+1],t[2i+1],tpr[2i+1]1 }H]
Factor[ (tpr[2i+2]/. pgm1)-(t[2i+2]/. pgm1)/.(tpr[2i]->t[2i])]

The program outputs the resulting condition, rewritten as:

[21] Vsl ¥ Veiiluzin +1
Viziat Vo2 Ve Y2

We now transform equation [21] to obtain the fundamental sharing
law of the mass deviations.

Theorem 1. The simultaneity condition is possible, in the zero mo-
mentum frame, if and only if at each even step 27, the mass deviations

obey the universal sharing law,

[22] 8:/(2m246,,)=0"2/(2"+8"5,), or in shorter notation, z2=7"2.
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Proof. The following program encodes the recursive solution of Sec-
tion II-1.4 for arbitrary initial conditions and it looks for the condition
that equation [21] will be satisfied.

pprx[2i]l=-px[2il;nu[2i+1]=2[2i]/(2(W[2i]-px[2i]));
nupr[2i+1]1=zpr[2i]/(2(Wpr[2i]+pprx[2i]));
pix[2i+1]=px[2i]-nu[ 2i+1);piprx[2i+11=pprx[2i]+nupr[2i+1];
rad[2i+1]=(m"2+(W[2i]-px[2i]1)~2)/(2(W[2i]-px[2i]) );
radpr[2i+1]1=(mpr" 2+ (Wpr[2i1+pprx[2i1)22)/(2(Wpr[ 2i] +pprx[2i]) );
vx[2i+1]=Simplify[ Together[ pix[2i+1]/rad[2i+1]1]1] /.2[2i]->W[2i]*2-px[2i]*2-m"2;
vprx[2i+11=Simplify[ Together[ piprx[2i+11/radpr[2i+11]]
[zpr[2i]->Wpr[2i]*2-pprx[2i] 2 2-mprA2;
vx[2i+2]=(m"2-px[2*i+1122+2*px[2%i+ 1]*W[2¥i+1]-W[2*i+1]42)/
(mA2+px[2%i+1]72-2%px[ 2%+ 1 *W[2¥i+ 1 ]+ W [2*i+1]72);
vprx[2i+2]1=(-mprA 24+px[2¥i+1142-2%px[2%i+ 1 1*Wpr[2*i+ 1]+ Wpr[2*i+1]22)/
(mprA2+px[2*i+1]22-2*px[2*i+1]*Wpr[2*i+1]+Wpr[2¥i+1]72);
px[2i+1]=pix[2i+1]-nupr[2i+1];pprx[2i+1]=piprx[2i+1]+nu[2i+1];
W(2i+1]=nuprl2i+11+rad[2i+11;Wpr[2i+1]=nul2i+1]+radpr[2i+1];
test=Numerator[ Together[ (vx[2i+2]vprx[2i+2]+1) (vprx[2i+1]+vx[2i+11)1]-
Numerator[ Together[ (vx[2i+1]vprx[2i+1]+1) (vprx[2i+2]+vx[2i+2]) ] ];
testprime=Factor[Simplify[ Expand[test11];
condition=Simplify| Expand[ Numerator[ Together[testprime]]/.
{z[2i]->W[2i]*2-m"2-px[2i]*2,zpr[ 2i]->Wpr[2i] *2-mpr " 2-pprx[2i] *2}]]

The output result furnishes the searched condition,

128*m " 2*mpr 2% (-px[2*1]+W[2*i]) 4% (-px[2*i]+Wpr[2*i]) ~4*
(-m " 24mprA 24+ W[2*i]122-Wpr[2¥i]72)* (m " 2+mpr" 2+ 2% px [2*i ] * W [2*i]-
W[2*i]2+2%px[2*11*Wpr[2%i]-2*W [2*i]*Wpr [ 2*i]-Wpr[2¥i] ~2)=0

Looking at the order of magnitude of the various terms, one finds
that only one factor may vanish, ie., »'7—m?+W>2- W2 a result which is
equivalent to condition [22]. That condition seems desperately too severe
to be fulfilled. Fortunately however we have the following theorem.

Theorem 2. If the simultaneity condition, 8:(277+8)=8"2(277'+8"2), holds
at time /=0 then it will hold at each later even time, 2:.

Proof. Eliminating the p, and the p’. between equations [1] to [4]
leaves four equations,

(23] 4m’v?,

2
- 4'?:;'Tr.v(..l+l\‘ll."+l =z

I

Ry .y U -
[24| 4m Vi +4Z!Ex.."+lvr'+] =z

i
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and

2,2 o2
[25] AV ATV = 2

2.,2 - — 2
[26] 4m Vr'-H -‘42,-,11,',,,\'“1 =Zia

The following program discusses their compatibility;

Reduce[{Eliminate[{4m~2 nuli+1]42-z[i]1*2-4 z[ilpix[i+1]nu[i+1]==0,
4m"2 nupr[i+1]172-2[i+1]72+4 z[i+1]pix[i+1]nuprli+1]==0},pili+1]],
Eliminate[{4mpr*2 nupr[i+1]72-zpr[i]72+4 zpr[ilpiprx[i+1]nupr[i+1]==0,
4mpr"2 nuli+1]72-zprli+1]172-4 zprli+1]piprx[i+1]1nuli+1]==0},pipr[i+1]1]],
{nuli+1],nupr[i+1],z[i+1],zpr[i+1]}]

One finds that the following relations must hold for all 7,
[27] m?zz,, =minz,

[28] am?v v, =171,

i+l

We now concentrate on equation [27] which is a first order recur-

rence which may be solved exactly. It suffices to rewrite it under the
equivalent form,

(/' W2 i/ 2 ) =1/ [/ 2 V(2 ) ).
Its solution is immediate:

15/ =2/ 2,
(m? 2, M m’2 ) =2/ 2,

It now becomes evident that the equality, z’o=z, entails:

[29] {zh =2y

2 a2
LONESTRIES (I § 7|

and this achieves the proof of theorem 2.

In conclusion, working in the zero momentum frame, the simultane-

ity condition is fulfilled, in the one-dimensional motion, if one respects

the

sharing law, z’y=zo, or equivalently, 8,(2m+8,) = 8,(2m’+d’), of the

total initial mass deviation of the system.
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1I-1.6. The numerical solution of the equations of motion

The interaction of two unequal masses, governed by equation [1] to
[7] may be considered as solved if the abscissas x; and x’; of both masses
can be displayed as functions of the times #. This can be achieved nu-
merically by applying the recursive scheme of Section II-1.4 to a set of
initial conditions. The total initial mass deviation, Aj=8p+8’s, must be shared
between the two particles in agreement with z'o=z,. This leads to the
following initialization,

CAA, +2m)

A (A, +2m)
= d LR, i 0
30) % 2A, +m+m') an %

T 2AA, A mt ')

The value of Ayis given and it depends on the strength of the
coupling at the starting point. Its sign is the same as that of &, and &'. In
the following example, we treat the repulsive case.

Working in the zero momentum frame, we have started at the initial
time f=,=0; x; and x'p are given. Though this is not essential, we shall
see later that the origin of the frame coincides with the center of mass of
the systemn if one respects the relation,

[31] %, ol +8)7 4+ p31" = —x,, [(n'+8,)" + p;1"*

The numerical solution of equations [1] to [7] is obtained by the follow-
ing program where the initial conditions are accurate to 25 significant figures,

m=1;mpr=2;d[01=1/100;dpr[0]=-mpr+N[Sqrt[mpr"2+d[0]*2+42m d[0]1],25];
z[0]=d[0]*2+2m*d[0];zpr[0]=dpr[0]*2+2mpr*dpr[0];px[0]1=2/100;pprx[0]=-2/100;
En=N[Sqrt[ (m+d[0])*2+px[0]72]4Sqrt[ (mpr+dpr[0])"2+px[0]~2],25];
W[0]=N[(En*2-mpr”2+m*2)/(2En),25];Wpr[0]=N[(En”2+mpr*2-m*2)/(2En),25];
t[0]=0;tpr[0]=0;x[0]=-1;xpr[0]=2;
xem[0]=N[(x[0]-xpr[0])Wpr[0]/En,25];xprem[0]=N[ (xpr[0]-x[0])W[0]/En,25];
Dol {(nuli+1]=z[il/(2(WT[i]l-px[i])),nuprli+1]=zpr[il/(2(Wpr[i]l+pprx[il)) },
{pix[i+1]=px[i]-nu[i+1],piprx[i+1]=pprx[i]+nupr[i+1]},
{rad[i+1]=(m"2+(WT[i]-px[i])~2)/(2(W[i]l-px[i])),
radprli+1]=(mpr 2+ (Wprlil-px[i])*2)/(2(Wpr[il+pprx[il)) },
{pxli+1]=pix[i+1]-nupr[i+1],pprx[i+1]=piprx[i+1]+nuli+1]},
{W[i+1]=rad[i+1]+nupr[i+1],Wpr[i+1]=radpr[i+1]+nuli+1]],
{z[i+11=W[i+1]12-mA*2-px[i+1]122,zpr[i+1]1=Wpr[i+1]*2-mpr" 2-pprx[i+1]"2},
{dli+1]=-m+(m*2+z[i+11)* (1/2) dprli+ 1 ]=-mpr+(mpr" 2+zpr[i+1]1) *(1/2) },
{vx[i+1]=pix[i+1]/rad[i+1],vprx[i+1]=piprx[i+1]/radpr[i+1]1},
{xprli+1]=(xprlil-vprx[i+11*(x[il+tpr[il-t[i]1))/(L-vprx[i+11),x[i+1]=(xil+vx[i+11*
(xprlil+tprlil-t[i]))/(1+vx[i+1]) L, If[Mod[i+1,2]==0,{ xem[i+1]=(x[i+1]-xpr[i+1])*
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Wpr[i+1]/En,xprem[i+1]=(xpr[i+1]1-x[i+11)WT[i+1]/En},a=0],
{tprli+1]=xprli+1]1-x[i]+t[i],t[i+1]=xprlil-x[i+1]+tpe[il }}, {i,0,N}]

The numerical results may be displayed in any desired way. Because
we are not mainly interested in the details of the trajectory of the parti-
cles, we first concentrate on the x-dependence of the interaction law. Two
approaches are in fact possible.

A first approach is based on the existence of a rather obvious invari-
ant of equation [1] to [4] ie,

12 1/2

1/2
] i+l

(32] ([m2+11:2 +[m? +1 )=W

£+l ]+(vf+l+v‘

1+l

Because the terms in the first parenthesis represent the total kinetic
energy of the system, the second parenthesis can be viewed as the total
potential energy, U. We may display the graph of the time evolution of
U, as shown in Fig. 5.

U
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The 1/r decrease of the long range repulsion potential in one dimension.

A similar graph can be displayed with U represented as a function of
the distance between the particles. It is immediately apparent that this
approach is not too pleasing because of the step-like character of the
graph with repeated discontinuities at the successive times ¢, and /. We
mention that it is possible to interpolate the graph by a smooth function
which would exhibit the expected 1/x dependence. However because of
this interpolation, and thus its rather arbitrary character, we shall abandon
this approach to concentrate on a much more interesting second approach.

Because the initial state of the system was described in term of a
mass deviation, Ay = &, + &%, adequately shared between the particles, it
seems natural to follow its evolution, Ay = & + 0, at times f. Because
the following quantity is also an invariant of the system i.e.,
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(33] [ +8,)° +p 1" +[(m'+8,) + p? 1/ =W, + W, =W

it is immediately seen, by comparison with equation (32), that A,/& is very
close to the total usual potential energy. Fig. 6 presents the evolution of
Ay as a function of the mutual distance, r; = Ix",—x2! . The shape of the
curve is consistent with the classical 1/r asymptotically decreasing law. That
point will be discussed in detail in Section II-1.8.

A
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0.004 .

0.002 .

- . r
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The decreasing law of the mass deviation.

1I-1.7. The analytical solution of the equations of motion

This is a much more delicate problem that must be solved in several
steps.

Step one: a recurrence relation between the three successive mass
deviations of a complete two-step cycle.

Theorem 3. If the simultaneity condition [22] is fulfilled, the follow-
ing relation holds between successive z values,

[34-] mEmQ z;ﬂ-l = zZJZEHZ{mz + z2r'+i )2

As a consequence of equation [29], an analogous relation exists be-
tween the 2’ values,

2022 ' 2,0 g2
[35] ' 25 = 20,2 0, (' H2y,,)

Proof. The following program replaces i by 27 in equations [231, [26],
[27], [28], [3b] and [4b] and then eliminates Vv, Moz and 0,21
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eliml=Eliminate[{4m”2 nu[2i+1]"2-4 z[2i]lpix[2i+1]nu[2i+1]==2[2i]"2,
4m*4 nul2i+1]172-4m*2 z[2i+1]piprx[2i+1]nu[2i+1]==mpr"2 z[2i+1]"2,
pix[2i+1]-z[2i]z[2i+1]/(4m*2 nul[2i+1])==px[2i+1],
piprx[2i+1]+nu[2i+1]==-px[2i+1]},{nu[2i+1],pix[2i+1],piprx[2i+1]}]

The result is a rational expression for pl,.: in terms of z; and zz.1.
We do not give derails here for the sake of brei+vity. An analogous
program replaces / by 27 in equations [23], [26], [27], [28], [1b] and [2b]
and it eliminates Va.z, Mo and 70,202

elim2=Eliminate[{4m"2 nu[2i+2]72-4 z[2i+1]pix[2i+2]nu[2i+2]==z[2i+1]"2,
4mpr”2 nu[2i+2]72-4z[2i+2]piprx[2i+2]Inu[2i+2]==2[2i+2]"2,
2[2i+1]2[2i+2]/(4m"2 nu[2i+2])-piprx[2i+2]==px[2i+1],
px[2i+1]1==pix[2i+2]+nu[2i+2] },{ nu[2i+2],pix[ 2i+2],piprx[2i+2] 1]

The result is another rational expression for the same pls. in terms
of 7y and z... Equating these two expressions furnishes the following
factorized equation,

(-z[2*i]+z[2+2%i])*

(mA2*mprA2*z[ 142%i142-m 4%2[2i]*2[242i]-2*mA2*z[2*i]*z [ 1+2*i]*z[ 2+ 2*i]-
z[2*i]*z[142%i]72%2[2+2%i])*

(m 4 z[ 2% 2[ 14 2% 1 4+m A 2* mpr A 2¥2[ 142%1] A 24+mA 2% 2[ 2% *z[ 1+42¥1] A 24m 4 z[ 2% ¥z [ 242*%]+

mA ¥z 142%1] % 2[242%1] A2*mA 2% 2[ 2%i 1%z [ 142711 *2[ 242 %1 ] +m A 2* 2 [ 14+2%i] 2% 2[ 24 2%i]
+z[2*i]*z[142*1]22*z[2+2*1])*

(m*2*mpr~2*z[2*i]*z[142%1]+m"2*mpr2¥z[ 1+2%1] 7 24+mprr 2*z[ 2%i] *2[ 142%i] * 24+

mA4*2[ 251 2[ 24 2% [+m A 2¥ mpr A 2*z[ 142%1]%2[242¥1]42* m A 2% 2 [ 21 ] * 2 [1+2%i ] *2[242*i]+

mprA2*z[ 142*i]A2*z[2+2*%il+z[2*i1*2[1+2*1]22*2[2+2%1]) =0

If one observes that each z-factor is of the order of magnitude of
2md, it is immediately seen that the two last factors never vanish. The first
factor could only vanish if one had z:=2, a result which is obviously
unphysical. The conclusion is that the second factor must be zero, a result
which proves theorem 3.

Equation [34] may be inverted under the useful form:

[36] L2l = mz(zz;zznz)m /[mm'_(zh'zb*—b)”z]

Step two: rational expressions for the velocities as functions of the z
values.
One has the following results,
2 [ 2 . 2 >
" Za+lz i+l -zx z:'+1 +Z:za+] —mzI,
2 2 2 2
mzz.- Z‘, +m ,za llzir'i-] +2m zr'zzﬂ o zf Z;+I o Z.'an

[3?] vx.;+] =
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12 ' 2 ] 12 voa2
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2 1 12 v 2o 2 oz
" Zle+m ZHIZJ-\I"'Z?‘” zr"z;+l+zrza+] +Z:Zi+1

381 V.=

Proof.

The acceptable solution of equations [23] to [28] in terms of the z
and 7’ is calculated by the following program. Although four solutions are
found only the second one furnishes frequencies v.i and V'., of the
correct sign.

partl={Solve[{(-4m"2 nuli+1]1*2+2[i]*2)/(4 z[ilnu[i+1])-nuli+1]==
(-4mpr”2 nupr[i+1]172+42zpr[i122)/(4 zprlilnupr[i+1])-nuprli+1],

4mpr”2 nuli+1Inuprli+1]==zprlil zprli+1],

mpr”2 z[ilz[i+1]1==m*2 zpr[ilzpr[i+1]),{nuli+1],nuprli+1]1}],
nuli+1]=nuli+1]/.part1[[2]],

nuprli+1]1=nupr[i+1]/.part1[[2]],

pix[i+1]=Simplify[ (-4m*2 nuli+1]142+2[i]*2)/(4 z[ilnu[i+1D],
piprx[i+1]=Simplify[ (-4mpr*2 nuprli+1142+zpr[i]1*2)/(4 zprlilnupr[i+1]1)])

For the sake of brevity we do not detail the results which are directly
used in the following. Equations [7a,b] then allow one to compute the
velocities. The following program, entitled «part2», uses the output results
of program «partl» to calculate the square of the velocities,

part2:={vxsq[i+1]1=Simplify [pix[i+1]*2/(m"2+pix[i+1]142)]/.
m*2 zprlilzprli+1] ->mprr2 z[i]z[i+1],
vprxsq[i+1]=Simplify[ piprx[i+1]2/(mpr”2+piprx[i+1]72)]/.
mprr2 z[ilz[i+1]->m?2 zpr[ilzpr[i+1])

The outputs are perfect squares; extracting the root furnishes equa-
tions [37] and [38]. The sign indeterminacies are resolved by observing
that », and o', must have the same sign as the dominant term in the
numerators noting that the denominators are always positive. For example,
if z121>22, then the particles are moving inward so that one has effec-
tively, >0 and #’,<0.

Step three: more about constants of the motion in the zero momen-
tum frame,

Energy and momentum are of course conserved during each cycle.
Arbitrary combinations of those constants are also invariant. Some of them,
only valid in the zero momentum frame, will prove useful. Energy is
conserved in every reference frames and we may write with the notations
of equation [9],

W+W. =W
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More can be said in the zero momentum frame because p=p;?. Elimi-
nating p/ between equations [9a, b], one finds,
W W = 47— =z,
We immediately deduce the simple expressions for the individual ener-
gies,
W{.' =(W’+m’—m’+ z;. -z;)/2W)

If we assume that the simultaneity condition (29) is fulfilled, we find
that the individual energies, W>, and W5 are invariant at the even times £,
W, = (W =m? +m*)/2W) = w
WZI, =(W>+m? —m?)/2W) =10

Let us see how it is possible to express these constants, or any

combinations of them, in terms of the z values. The example of —w/w’
will prove to be especially interesting for our purpose.

{W. =(W?=m’+m’ -z +2,)/2W)

Let us first rewrite equations [23)], [26], [1b] and [2b] where i is
replaced by 2i. Taking relations [27] to [29] into account leaves a system of
four independent equations for the four unknowns, 7. 2.1, Tesit, Vaii, Zoier

4’”2\";;'“ =42y 5 Vi = 7,
Am'Vi, = A, T Vo = 2,
T F Vo T o~ %00 /(4”"2"'2;41) =0
Tz TV =Puas
The solution is easily found in terms of the data, p: and z,
Voo =4 p 0z, /120m' +2,,)]
(39] oo = fix.zf ~Van
Lo =m W+ p o Nw'+p, )0, /' +2,)(m" +2,,)]
T =Py H W' +p, )7, /12(m"* +2,,)]
where we have set:

{w = (Pizf' +m’ +er')”2

2 2 12
w'= (Px.zf' +m'" +zy)

Inverting the third relation of the set [39] allows one to find p.. in
terms of the of the z values,

401 [p,, —(m* + 2+ Pf,?.—' )”2][?‘.2; — (" +2, + P_f.zf')“z] = mzzz.-' /2y

The following program solves equation [40] for p.» and then calcu-
lates (w/w’)?,
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Solve[ (px-Sqrtlpx*2+m”2+z[2i]1]) (px-Sqrt[px*2+mpr*2+z[2i]])== m*2 z[2i)/
z[2i+1],px];
Factor[Cancel[ (px*2+ m”2+z[2i])/(px"2+ mpr"2+z[2i])]]

The output result is a perfect square. One deduces —w/w' by extract-
ing the proper root, retaining the minus sign because the result must be a
negative constant, ie. in detail,

wiw' = W/W'y = ((mAF2[2%1]42-2"m A4 2 [2%1] 2 [ 142%1]-2FmA 2%z [ 2%1] A 2%
[142%1]-mA2*mprA 2% z[ 142%1]A2-mA2%2[2%i] *2[142%1] A2-mpr A 2*2[2%1] *2[142%i] 2 2-
z[27i]72%z[142%i]172) / (m~4%z[2%i]724+ 2*m"2*mpr 2*z[2%i]%z[1+2%i]+
2*mA2%z[2%i172%2[142%i]4m 2" mpr 2*z[1+42%i]A24m*2%z[2%i]
*z[142*1] A 24mprA2¥2[ 2%1]*2[ 1+2%1] A 242[2%1] A 2%2[ 1+2%i]72)

Step four: definition of the center of mass.

Although the choice of the origin is unimportant in the calculations, we
expect that the results will appear in their simplest form if one makes the
origin coincide with the center of mass of the system, properly defined. In
fact the appellation «center of energy» should be more appropriate.

Theorem 4. If the relation
[41] X 2 (1 +8, ):+ Pi‘ M= _xl."m,Za [(n'+8', )+ Pi e

holds at time ¢, then it holds at every even times #. It is equivalent to
saying that the center of mass of the system remains at rest or, in other
words, that the ratio, x'.m2 /Xomz =X omo/Xmo, femains constant at the value:
—Wz;/wnzf = —w/w’,

Proof. We begin with the following program which substitutes succes-
sively 2/ and 2/+1 for 7 in the space-time equations [5], [6] and searches
for the residual relations existing between the velocities and the positions
defined at even times #; and £

Simplify[ Eliminate[{xpr[2i+1]-xpr[2i]==vprx[2i+1] (tpr[2i+1]-t[2i]),

x[2i+1]-x[2i]==vx[2i+1] (t[2i+1]-t[2i]),

xpr[2i+2]-xpr[ 2i+1]==vprx[ 2i+2] (t[2i+2]-tpr[2i+1]),

x[2i+2]-x[2i+1]==vx[2i+2](¢[2i+2]-t[2i+1]),-x[ 2i ] +xpr[ 2i+1])==tpr[2i+1]-t[ 2i],

xpr[2il-x[2i+1]==t[2i+1]-t[2i],-x[2i+1]+xpr[2i+2]==t[ 2i+2]-t[2i+1],

xpr[2i+11-x[2i+2]==t[2i+2]-tpr[2i+1] },{x[2i+1],t[2i],xpr[2i+1],t[2i+2],tpr[ 2i+1],
t[2i+1]}]1]

Three independant relations are found between the non-eliminated
variables. The first restores the simultaneity condition [21]. The two others
are writen as,
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[42a] (L4050 )Xy =0y %5, ) = (1= WXy +0 i X2i42)
[42b] (M=v )00+, ,000, ) =0+, 5, N =X 502)

Dividing equation (42a) by (42b), we obtain,

[43] M40, ) T, =0 o WU 0 5 S =0, 50500/ Xy,) =
(SETTPTND [CONRVE SO TN ¢ el Ny [t B NPT /x5)

We now prOVC thﬂt, ]-f x’rm,z.r /X¢-m.2r' = _WEJ/W,ZJ' = Vw/w’, then x’cm.Zr'+2 /
Xewais2 automatically has the same value. This recursion will achieve the
proof.

The value of the constant of the motion, —W>/W",, has been calcu-
lated in step three in terms of the z values. The following program
substitutes ..z /% by that result in equation [43]. Solving for x’... o/
Xew2it2, the program precisely retreives the same expression, —w/w’.

equ=Solve[ (1+vprx[2i+2]) (result-vprx[2i+1]) (14+vx[2i+1]) (1-y vx[2i+2])==

(1-vprx[2i+1]) (y+vprx[2i+2]) (1-vx[2i+2]) (1+result vx[2i+1]),y];

y=Cancel[ Together[y/.equl [111/.2[2i+2]->m*2mprA2 z[2i+1]72/
(z[2i](m"2+2[2i+1]1)72)]]

This establishes the recurrence and terminates the proof.

In short the coordinates of the center of mass-energy are calculated as:
x:'m.Zr' = (x2r' - ler' )w‘ / W
=—(x,, =%, )w/W

Step five: the spatial dependence law of the mass deviation.

X

oo 2o

Theorem 5. The following invariant quantities define the spatial depend-
ence of the mass excesses,

X, (2md, +83,)=x_,,(2md, +8;)=C"
x'rm.Z\ (ZmIBIZJ +5I§£ ) = X‘r:m.[) (zml 5!0 +6'§ ) = Cl
The proofs of [44a] and [44b] are quite similar. To prove [44a], we

first rewrite equation [42a] in the special case where x and x5 are
replaced by x... and ... respectively and we devide both members by
X.m2i, while taking theorem 4 into account. The following program solves
the remaining equation for x.,2.>/ Xum2. In this program, «resu» stands
for the constant, —w/w’, calculated in step three.

[44a, b]
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equ=Solve[ (1+vprx[2i+2]) (resu-vprx[2i+1])==q(1-vprx[2i+1]) (resu+vprx[2i+2]),q];
gq=Cancel[ Together[q/.equ[[1]]/.2[2i4+2]->m”"2mpr"2 z[2i+1]72/
(z[2i](mA2+2z[2i+1])72)]1]

The output is z/7:.o. We have thus proven the existence of the
following recurrence which establishes theorem 5,
Xem, 2428242 = Xem 264240

Corollary. A corollary of theorem 5 is that relations similar to [44]
may be written in terms of the mutual distance between the particles,
independantly of the choice of any origin,

(x5, =2, )(2md,, +835,) =(x'y —x,)(2md, +8;)=C"
(x',, =2, )2 &, +8', ) = (x', —x,)(2m' &, +8'5 ) = C"

[45)

1I-1.8. Interpretation of the results

The consequences of theorems 4 and 5, and its corollary, are numerous.
1) The spatial dependences of &, or & are easily deduced from theo-
rem 3:

[40] 8, =—m+lm’ +x,,,(2m8,+8))/x,,,]1"

46 ) ) )
8 = =+l 5, 2m8 +87) /¥, 1

2)  The total mass deviation, As, = 8, + &5 (i=0,1,2,...), is very close to

the mutual potential energy, U, of the system. Its components are

deduced from equation [30]:

Sy 8,8, +2m)

(471 8, 2(A,, +m+m') 2A,, +m+m')

3)  We obtain the spatial dependence of A, from that of &, and &.. The
final result has been rewritten as a function of the mutual distance,
rz;=1x’z,—>cz,|, to give

72, +5;)}”2 {m‘z 1278, 45 )]“2

[48] A, =—(m+w')+ [m2
7,

£)

I}

This is the function which interpolates exactly the dots of Fig. 6.

In summary, we have found, in one dimension, that the total mass
deviation carried by the interacting electric charges, is given by the follow-
ing general law, rewritten with usual units:

[4] A=—(m+m')c’ +[mzc" + ?\./r]m +[m'2 ct+ k/r]”z

where:

2mm' ¢

ee'
m+m' 4me,
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The A-value has been calculated so that, at large distances, we retrieve
the expected 1/r behaviour of the standard Coulomb interaction law,
U, = e£'/(d4neer). At short distances we observe that A becomes mass-
dependent and moreover it behaves like 172

In the special case of an attracting system, like a pair (e", ¢), we find
a A-law, written as,

Ale™,e7) = 2me (=1+[1+ alh / mc)/ r1V'7)

where o is the fine structure constant. Note that the critical distance is as
short as A/mi.c.

The same could be said about the classical model of the hydrogen
atom (p*, ¢’). One finds in that special case the A-law,
172 1/2
20072, (k/m,.c)] T 1_[1_ 2007, (ﬁ/mpf)J

Ap* e )=—m.c’ 1-{1-—7
m,tm, r

mp-i—mr r

and the critical distance is again of the order of A/m.c. A similar slight
modification appears in the planetary problem. Considering the motion of
a planet around the sun leads to the following interaction A-law,

2 ) 172 2 . 172
. e
Als, p)=-m | 1- 1-——’-'—@ —m | 1- 1——-’4’??—?
m+m, c°r ! m, +m, cr

If the planet is the earth, for example, this modified law entails a 1%
discrepancy from the 1/r law at a distance of about 300km from the
center of the sun. The problem of possible cosmological consequences is
left open.

II-1.9. Exact positions versus time.

Although we are not mainly interested in the complete writing of the
trajectory let us however mention that positions, x5 and x’;, and times ty;
may be written in closed algebraic form. This can be achieved in the
following way.

Theorem 6. The quantities, u = Vz,, obey a second-order linear recur-
rence with constant coefficients,

(50] wyl = (W2 = =) [ Vi), + ;) =0,
where W is defined as the constant total energy of the system, ie.:

[51] W =[n? 42, + p2 17 +[m? 42, + p3, 1%
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The theorem is proven by the null output of the following program,

invl=(mA2*mprA2*u[2*i]7242*m 3 *mpr*u[ 2*i] *u[242*i]+mA2*mprA2*u[2+2%i] A2
-mA2%u[2%i]A2%u[2+2*1 ]2 24mpr A 2¥u[2*1] A2%u[ 242%i]~2)/

(mA2*mpr A 2%ul2¥i]A2+2*m*mpr 3 *u[2¥i]*u[2+2*i ]+m A 2*mprA2*u[2+2*{]42
+mA2%u[2*1] A 2*u[242%i]A 2-mprr 2*u[2%i] A 2%u[242%i] 7 2);

equl=Solve[ (x+Sqrt[x*2+a]) (x+Sqrt[x*2+b])==c,x];x=x/.equl[[2]];
Factor[Cancel[x*2+a]];Factor[Cancel[x"2+b]];

result=Cancel[ ((a*b+2*a*c+c”2)+(a*b+2*b*c+cA2)) A2/ (dc(a+c) (b+c));
a=m”"2+u[2i]*2;b=mpr*2+u[2i]*2;c=m*2 u[2i]*2/2[2i+1];

z[2i+1]=m"2 u[2i]u[2i+2]/(m mpr-ul2ilul2i+2]);
equ2=Solve[invl==c,u[2i+2]];root=u[2i+2]/.equ2[[2]];
inv2=inv1/.{2i->2i+2,2i+2->2i+4 };

test=Numerator[Simplify[ Together[inv1-inv2]]]/

(2m mpr(m”2-mpr"2)u[2i+21)/.(u[2i+4]->u[2ilu[2i+2]/(g ul2il-ul2i+2]));
equ3=Solve[Numerator[Simplify[ Expand[ Together[test]1]111/

(u[2%i]*(g*ul2%i] - 2*u[2 + 2*iD*ul2 + 2%i])==0,gl;g=g/.equ3[[1]];
Numerator[Simplify[ Together[g+(m”2+mpr”2)/(m mpr)-result/(m mpr)]]]
output = 0

Because of equation [45], theorem 6 may be rewritten in terms of the
square root of the successive distances, ¥’ - x5 , namely,

[52] +Jx'ss =310 = W2 =112 =082Vttt X .y =25y F 4% 5 =%, =0
VX 2004 T X204y 2i+2 T X350z T A X 3, Ty,

Similar relations exist with x'5, and x replaced by either x.,. or
x'on2. This is a consequence of equation [44]. An equivalent recurrence
which avoids the square roots also exists but it is non-homogenous. Recur-
rence [52] may be solved exactly. Equations [6a, b] furnish in turn linear
recurrences which may also be solved for the times, #, in closed form. We
do not pursue the calculations which lead to cumbersome formulas which
seem of little interest.

II-3 Extension of the model to higher dimensions: an application to the Kepler
problem

In Sections II-1 and II-2, we have explicitely considered particles that
experience rectilinear motion. Even if this it is not the case, the model
remains valid in the zero momentum frame. If the initial momenta, f, are
opposite to each other but not directly opposite, then the motion becomes
two dimensional. In this case the calculations are more complex though
not intractable. As an example of a multidimensional problem, we consider
the extension of the model to the Kepler problem. For the sake of
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simplicity, we assume that the attracting center is infinitely heavy and there-
fore at rest. The simplification in that case is that the infinitely heavy center
never emits nor absorbs a boson. This is an immediate consequence of
equation [30]. Only the moving particle repeatidly emits and absorbs the
mediating boson which is regularly simply reflected by the center. Fig. 7
details the first steps in the evolution of the system. At time =t the
particle experiences a negative mass defect, 8, which is very close to the
mass equivalent of its attractive potential energy. Its momentum is p, and its
position, with respect to the attracting center, C, is 7;. At the time fy+€, the
particle emits an antiphoton of negative frequency v, in the direction of the
center which reflects it so that it collides with the particle at the later time,
t, at its new position, 7,. It is then instantaneously reabsorbed so that the
particle experiences a modified negative mass defect, 8,, and so on.

La T
t, B : e tgte 1 ,-"‘.C
-3, S
Vi
m
t ¢ ﬁl
4
m+51 .,
. ?1 N
-- C - C
Fic. 7

The Keplerian interaction.

The evolution of the system is governed by the following sets of
equations (=0, 1, 2, ...},

[539“ b] [{m+ 8‘ )2 + pf]“z — [mz + th_l]”z N \;r__H
P, =T = Vil
[54a, b] [mz + ‘ﬂ:r2+1]l;2 tVa= {(m + 8;‘+1 )2 + Pf'z+1 ]“2

B =T 4V,

i+l r+17r+1
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. —~ 1/2
rz'+1 = ?:, + n:’+l (IHI - tr’ ] /[(mz + ni-] )]

rz' + rx’+| =

[55a, b]

+1 ..;1

where 4 denotes the unitary vector parallel to a.

11-3.1. The analytical solution of the Kepler problem.

The recursive solution of the system requires that we extract the
(i+1)-indiced variables as functions of the i-indiced variables. Using the
following notation, 7, = (r,cos@,, r:sing;), the resolution proceeds in five steps.

Step one: elementary constants of the motion.

A simple inspection of the equations of motion [53] to [55] reveals
the existence of two obvious constants of the motion, i.e., the total energy,
W, and the angular momentum, J. They may be written in various equiva-
lent ways,

(56] [(m+5,)2+p.2]”2=[m2+1tf]”2+v‘.:W
(571 fX‘I'.I:!..:?J.)(‘jTl:Hl=§-;.)(L.l_;;z_:‘,'
Step two: some relations which may be deduced from [56] and [57].

Cross-multiplying equation [55a] by 7.; and eliminating (£.,-2) with
the aid of equation [55b] leads to,

1/2
TSS] L) Sin((le - "pr) = }(rﬁ—l + ?" ) I[m2 + nfﬂ]

Squaring 7.~ in equation [55a] and eliminating (t.;-t) as previously
furnishes:

(591 i +rl=2rr, cos(@,, —@,) =, +r)n /n’ +m)
Eliminating 7, between equations [58] and [59] gives
[60] rrsin’[(9,,,-9,)/2|= ]} /m’
or, equivalently,
(61] 710 €08’ (@, =)/ 2| =rry =] /1t
Squaring equation [58] and eliminating (¢,,,—) with the aid of [60] gives:

[62] mt+1l, = /D eV rr =] )

I+l
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Equations [60] and [62] permit a quick calculation of ¢., and m.,
once r,;is known. We now calculate 7.

Step three: a much less evident constant of the motion.

W and ] are classical invariants of the Kepler system. Because our
model introduces supplementary variables, like v and 7, it is not surprising
that an additional constant of the motion exist. We have found that the
following equivalent expressions are invariant for all 7,

[63] 2Wmnlrr, )'"? cc»s[(q:g-+I -9,)/ 2] -m’(r,, +r)=H
[64] ZWm{r;:;.H —J;'Z/mf]”2 -m’(r., +1,)=H
(651 2mv, [ -1 /m?] " =H

(66] 2mv,.,(rr,.) % cos(g,., —9,)/2]=H

The proof of [63] is intricate and we prefer to postpone its demon-
stration to Appendix A. Invariants [64] to [66] are more or less obvious
consequences of [63]. Their proofs are therefore left to the reader.

Step four: explicit calculation and interpretation of the constant H.
Theorem 7. The expression,
[67] ri(2mé+62) = H

is a constant of the two-dimensional motion and its value is also equal to H.

The proof of theorem 7 is postponed in Appendix B. The importance
of the theorem may not be underestimated. It ensures that theorem 5
applies in more than one dimension. In particular the interaction law, (49),
remains valid, in a simplified form because we have considered an infi-
nitely heavy attracting center, ie.,

(68] A/czz—m+[m2+H/r]“2

The constant H appears now related to the constant coupling strength
of the center, ie., H=2mee /(4ne,?), in the Coulomb problem and H=-
2GMn2/, in the planetary problem.

The modified interaction law [68] deviates from the classical potential
law when r ceases to be negligible in comparison with the critical distance,
ro=H/m?.
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Step five: calculation of the trajectory.

Theorem 8. The successive radial positions, 7, of the moving particle,
obey a non-homogenous linear second-order recurrence relation with con-
stant coefficients, i.e.;

(69] o +(2—4W? /o), 41, +2H/m’ =0

Proof: one multiplies equation (A6) by #'? and one applies equation
[61] two times to obtain:

1/2 1/2
2Wr, = m[r[_lr, -J? /mz] +m[r,-r,+1 =) /mzl
Surprisingly, that non-linear recurrence may be linearized! It suffices
to eliminate the square roots with the aid of equation [64] to obtain the
desired result [69]. A recurrence like [69] is exactly soluble in terms of
elementary functions. We conclude that the radial part of the trajectory is

calculable in closed form. The resolution of [69] being a classical matter,
we only give the final result,

[70] r. = Asin(i& +¢)— H /(2m’ —2W?)

where £ is determined by the relations,
rz’n&z(ZW/mz}{mz—WZ]m_
cosE =W =m®)/ m’
Two initial conditions are thus necessary to fix the values of A and

® in [70]; ry is, of course, given and r is deduced, for example, from
equation [B3],

n =(r, /mz)[pg +W? +2W'po-?0].

The times, #, may also be calculated exactly as solutions of recurrence
[55b] and the angles @; follow from equation [60]. The trajectory may
then be displayed in any desired way. An alternative method exists for
obtaining the numerical solution of the Kepler problem. It suffices to
eliminate m,,; between equation [53a] and [53b]. One obtains,

N 87 +2mb,
20 b, +[m+8,)7 + p117)
The other quantities easily follow from equations [53b] to [55b]. We

have numerically tested this procedure, starting with the initial conditions,
m=1, re=1, =0, 9s=0, p¢=0.02, 8=-0.001 and O,=angle(7,po)=1.2radians.

m=1;:[0]={ 1,0 );t[01=0:p[0]1=N[{ Cos[6/51/50,8in[6/51/50},25];
d[0]=N[-1/1000,25]; W=N[Sqrt[ (m+d[01)*2+p[0].p[01],25];
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rmod[0]=Sqrt[r[0].c[0]11;]=r[0]1[[1]]*pL0]([2]]-r[0]L[2]]*p[0]L[1]];
Do[|nuli+1]=(d[i]*2+2m d[i])/(2(rlil.pli}/rmod[il+Sqrt[ (m+d[i])*2+p[il.p[il1));
pili+1]=plil+nuli+1]r[il/rmod[i];

rmod[i+1]=rmod[il(p[il.p[i]+W~2+2W plil.r[il/rmod[i])/m"2;
eli+1]=r[il+pili+1](rmod[il+rmod[i+11)/Sqrt[m"2+pili+1].pili+1]];
t[i+1]=tlil+rmod[il+rmod[i+11;pli+1]=pili+1]+nuli+11r[i+1]/rmod[i+1];
d[i+1]=-m+Sqrt[W»2-p[i+1].p[i+11], {i,0,N}]

The results of the computations are displayed in Fig. 8. They show
that the motion is quasi periodic as expected. We have verified that the
rotation of the perihelion of the ellipse is consistent with the classical
results obtained in the standard theory of special relativity because r>>r.,
(=2.10" in the example). It would increase if the initial conditions were
drastically modified so that the particle enters in the domain where the
potential law deviates from the 1/r behaviour.

0.4}

0.2}

=-0.2¢

-0.2 0 0.2 0.4 0.6 0.8 1
Fic. 8

An example of Keplerian trajectory.

III-1 Short-range interaction in one dimension
III-1.1. Short-range repulsion

In Sections II we have verified that the zero rest mass boson ex-
change theory is consistent with a long range interaction potential which
decreases asymptotically according to the 1/r law. In this section, we ex-
tend the theory to finite rest mass boson exchange. We shall verify that
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such exchange results in a short range interaction and we will propose an
analytical expression for the corresponding mass deviation. Fig. 9 illus-
trates, in the zero momentum frame, the short range repulsion between
two particles of respective masses » and 2.

'ﬁ' t=f,
Qe

D fote=tot
I p+te=tg+c
oql@—)ﬂll fi-¢
|

%o
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K ? m'+8) fien
ﬁ@ q“],l: E O—Iﬁ% }—)‘“'2 t'1+c
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Short range interaction in the general one-dimensional case.

As in Section II-1 we assume that both particles exhibit small initial
mass excesses, Oy and 8’ with 8 and &, >0. When the particles are re-
leased at time t,, they each emit a boson of fixed rest mass, p and p’, and
they recoil, recovering immediately their respective rest masses, m and m’.
The emitted bosons experience, thereafter, a sequence of elastic collisions
with the particles which then accelerate in agreement with a law to be
determined. It is interesting to note that, contrary to what happened in
case | for photon exchange, the sequence of collisions is finite. Indeed,
each collision between a particle and a boson decelerates it so that, after
some time, the boson becomes too slow to once again catch the particle.
From that time, the particles no longer accelerate but rather they pursue a
rectilinear uniform motion. In other words, from a certain distance on-
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wards, the interaction vanishes which means that it has a finite range. The
same argument does not apply to case I because exchanged photons are
progressively weakened in frequency, but not in velocity.

I11-1.2. Short-range attraction.

Short-range attractions may be interpreted as the result of negative
energy boson exchange. A negative energy boson of negative rest mass,
<0, which travels at the velocity, @, see Fig. 10, is characterized by a
negative energy, W<0, and by a momentum, g, directly opposite to its
velocity such that,

W=—Julc +cg and G=—to—
1-02/¢?

E=-Vuic*+ @?

-
w
A _. >
-
a- KW p<0
VI-w/cZ
Fic. 10

The attributes of a negative energy boson.

As in Section II-1.2, we assume that attracting particles exhibit slight
negative initial mass defects, 8y and &< 0 and that, once released at time
to, they each emit a boson of fixed negative rest mass, i and W', recovering
immediately their respective rest masses, 7 and 7.

11I-1.3. The equations of motion.

In order to determine the dependence of A upon x, we proceed as
in Section II-1. To this end we write the following recursive system of
equations which is the counterpart of the set of equations [1] to [7] in
case I. A double sign + has been used to deal simultaneously with the
repulsion (upper sign) or the attraction problem (lower sign).

Firstly the “energy momentum” subset (7 = 0, 1, 2, ..):

[ore)t 02 ] = [ om0l

[71a,b] xftl
px‘.r = Tcx,i+| +4x,r+1
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[(MI_FS;)Z + Pi"]uz = [mlz + nlj_»l ]”2 i(“? + qliaﬂ )Uz

px,r’ = nx.r'-rl + qx.r"il

[72a,b]

)

1/2 i B / 1
[?33,13] (mz +T[f.:‘+]) i(u; -1-q;,1v1)L ’ =[(m+61+1 )2 + pi!v]]

px.1+l = T[x,x+1 +Qx,r'+l

‘2

2 12 2, 2 12 R oy .2 V2
[74a,b] (??3 + Mein ) i(“': +qm'+i} = [{m +8:‘+I] + px.a’+1]
IO\'J-‘-I = R,\-,Hl +qni+l
Because the two mediating bosons are successively and alternatively

emitted and absorbed by both particles, we have used the following con-
densed notation,

175a,b] {Uz, = uzxﬂ = J-ll
]'l2f+1 = uz; = I-l
Secondly the “space-time” subset is given by,
[76a,b] X —x, =0 (8, — 1)
x’.*‘t - x! = 'v.\.."fl (!r'+1 - !;]

X =x +w, (£, —t)
[77H,b] { i+l i X 1( i+1 i

Xa= x; +w;,f+1(t;+l _t;'J
where the velocities of both particles are again given by equations [5a,b]
and those of the bosons are related to the momenta in the following way,

B +G

1+l

— i+l
W)
iénl
(“1'2+qu[
The solution of equations [71] to [78] is unique provided the follow-
ing initial conditions are known, the masses # and #/, t=f,=0 without
loss of generality and x, and x’. Though the choice of the origin is
unimportant it may be judicious to associate it with the center of mass of
the system correctly defined. The following quantities are also given, the
initial momentum p,, which is zero if the particles are initially at rest, the
rest-masses, | and [, of the mediating bosons and the initial mass ex-
cesses 8 and &' To share the total mass deviation between its two
components, & and &), we need again a conjecture similar to that of
paragraph II-1.5.

[78a,bl

le = )|,'2
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III-1.2. The condition of simultaneity.

We postulate that the rest-masses of the bosons and the mass ex-
cesses initially borne by the particles, under the form &, and &, are such
that each two-step cycle, as described by Fig. 9, starts and ends simulta-
neously for both particles in the zero momentum frame.

That this simultaneity can hold is not at all evident. The demonstra-
tion needs again an in-depth discussion of equations [71] to [78]. The
following is a shortened paraphrase of what has been done in Section II-
1.2. Lengthy proofs are omitted for the sake of brevity.

Let us simply mention that the simultaneity condition implies again a
relation between successive velocities, in fact the generalization of equation
(21), which is written as:

VogiaVunion “ Wit 5 VioidViaia “ Wi inis
w,\.ZHI + w,

vx.2:+1 - 1I"‘.».'.I?Hl Wy 202 + W22~ vx.?:’d 2 T V242

i+l

Eliminating p.. and the square roots between equations [66] to [73]
leaves only four independant equations which generalizes equations [23] to
[26]:

Am’q’, =AMz, —WIN g, HANE (R L )= (2, —pl) =0
20 A U+ P )= P =0
A~ ey W+ 07) = 2~ =0
4mq = Az~ U, G AR ) = (2, —p]) =0
The definitions [8a, b] of the quantities z; remain valid, i.e.,

zi:2m51+5r’ ’d.l'ld Zi,=2 m,5!,+al,2.

The compatibility condition for these equations, which generalizes equa-
tion [27], is written as,

|?9] mlz (z.r' - I‘Lf)(ziﬂ - u;z+1 ) = mz.(z‘.f _u'f )(Z'i+1 _u'fﬂ )

The theorems proven in Section II in the context of photon ex-
changes may be converted in the context of finite mass boson exchanges.
They cover both the repulsive and the attractive cases with the appropriate
signs of 8, and &,. Their proofs, which are based on arguments similar to
those developed in Section II, are not reproduced here.
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Theorem 8. The simultaneity condition, which ensures that a two-step
cycle which starts at simultaneous times #,=f» for both masses will also
end simultaneously, i.e.: #,.0=t"22, is automatically fulfilled if one respects
two conditions, (1) the masses, u and W', of the bosons are inversely
proportional to the masses of the particles,

[80] mp = W

and (2) the initial mass excesses obey the generalized sharing law,

(81) 8,2m+8,)—pn’ =8 2m'+8 ) -p"

Theorem 9. Assuming that the condition [80] and [81] are satisfied,
one verifies that if the relation,
[82] 822+ 85—t = 822’ +8%) -
holds for /=0, it holds for all successive i-values (1, 2, 3, ...).
The same can be said about the following equivalent expression,
(m+8,))' —2m” + W) +8,) +(m’ —p’)’ =

(m!+8‘2:_ ]4 _ 2(!’?3‘2 +ur2 )(??3' +8'2! )2 +(mr2 _ul}_’ )2

Theorem 10. If the relation,

[83] xcm.Z; [(M+ 82! )2 + sz,zf ]l;z = _xlcm\zi [(ml +8I2£ }2 + pi.Z:']”Z

holds for /=0, it holds for all successive i-values (1, 2, 3, ...).

Because equation [83] defines the center of mass of the system, it is
equivalent to saying that this center of mass remains at rest or, in other
words, that the ratio, x'.,2/%cm2 = X'omo/Xomo, Temains constant.

Theorem 11. The following invariant quantities define the spatial de-
pendence of the mass excesses,
[ +8,,)" =2(m" + 1)1 +8,,) +(m* =) 1 =C
[{ml+ah }4 _ Z{mnz +u|2 ](m| +8'2i}2 +{m12 _uIZ )2]1.-’2 - CJ

X

om 21

[84ab]
X cm i

Theorem 12. Equations [84a, b] may be rewritten in terms of the
mutual distance between the particles:

(85] (x,, — x5 )(m+8,,) =20m” +u*)m+38,,)" +(m® —pu?)’ "2 =C’

All these results may be verified numerically using Mathematica’s
multiprecision arithmetics. A program is presented in the next section.
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II-1.3. The numerical solution of the equations of motion.

Equations [71] and [72] are easily solved after elimination of m,,.,
and 7'.;;. One finds,

P2 + R E WGz, —12) = 4y
QA;d-l 2{m +Z}
px,(z +UDFW, (z, )2 —dm?u?
qxa 1
2m’* +Z,)

The upper (lower) signs before the radicals correspond to the repul-
sive (attractive) case and have been choosen in order to entail the correct
sign of the momenta ¢. and ¢’.. The complete solution results of a
straigthforward resolution of the subsequent equations [73] to [78].

The total initial mass excess A=8,+8"y must be shared between the
two particles in agreement with the relation (81). This leads to the follow-
ing equivalent initialization,

Ay(A, +2m' ) +p? —p"? sl B A (A, +2m)—p +p"
2AA, +m+m') ! 2AA, +m+m')

where Agis given and it depends on the strength of the coupling at the
starting point.

The following program computes recursively the numerical solutions
of the repulsion problem with the following initial conditions, m=1; m’=2;
u=0.0005; W=p/2=0.00025; pe=0.02; ,=0.01.

[86] &, =

muli_]:=mapr Mod[i,2]+ma Mod[i+1,2];mupr[i_l:=ma Mod[i,2]+mapr Mod[i+1,2];

m=1;mpr=2;ma=N[0.0005,25]; mapr=m ma/mpr;

d[0]1=N[0.01,251;dpr[0]=N[-mpr+Sqrt[mpr*2+mapr*2-ma”2+d[0]*2+2m d[0]],25];

2[01=d[0]72+2m*d[0];zpr[0]=dpr[0]*2+2mpr*dpr[0];

px[01=N[0.02,251;pprx[0]1=-N[0.02,25];

En=N[Sqrt[ (m+d[0])*2+px[0]*2]+Sqrt[ (mpr+dpr[0])*2+px[0]~2],25];

W[0]=N[(En"2-mpr"2+m”"2-mapr”24+ma”~2)/(2En),25];

Wpr[0]1=N[(En”2+mpr”2-m”*2+mapr”2-ma”2)/(2En),25];

t[0]=0;tpr[0]=0:

x[0]=-1;xpr[0]=N[Sqrt[ (m+d[0])*2+px[0]~2] x[01/Sqrt[ (mpr+dpr[0])~2
+px[0]~2],25];

xem[0]=N[(x[0]-xpr[0]) Wpr[0]/En,25;xprem[0]1=N[(xpr[0]-x[0])W[0]/En,25 ];

loop=Dol[{{gx[i+1]=(px[i](z[i]+mu[i]*2)+W[i]*
Sqrtl(zlil-muli]l*2)22-4m*2 muli]l*2])/(2(m"2+z[i])),
qprx[i+1]=(pprx[i](zpr[il+mupr[i] *2)-Wpr[i]*
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Sqrtl(zprlil-mupr[i]*2)*2-dmpr”2 mupr[i]*2]1)/(2(mprA2+zpr[i])) },
{pix[i+1]=px[il-qx[i+1],piprx[i+1]=pprx[il-qprx[i+1]1},
{rad[i+1]=Sqrt[m"2+pix[i+1]*2],radprli+1]=Sqrt[mpr"2+piprx[i+1]1°2]},
{px[i+1]=pix[i+1]+qprx[i+1],pprx[i+1]=piprx[i+1]+qx[i+1]},
{Wli+1]=rad[i+1]+Sqrt[mupr[i]*2+qprx[i+1]*2],
Wprli+1]=radprli+1]+Sqrt[muli] *2+qx[i+1]1*2]},
{z[i+1]=W[i+1]22-m*2-px[i+1]1*2,zpr[i+1]=Wpr[i+1]*2-mpr* 2-pprx[i+1]72},
{dli+1]=-m+(m*2+z[i+1]1)*(1/2) dprli+1]1=-mpr+(mpr*2+zpr[i+11)*(1/2) },
{vx[i+1]=pix[i+1]/radli+1],vprx[i+1]=piprx[i+1]/radprli+1]},
{wx[i+1]=gx[i+11/Sqrt[muli]*2+qx[i+1]72],
wprx[i+1]=qprx[i+1]/Sqrt[mupr[i] *2+qprx[i+1]72]},
{tprli+1]=(x[il-xpr[il+vprx[i+11tprlil-wx[i+11t[i])/ (vprx[i+1]-wx[i+1]),
tli+11=(xprlil-x[il+vx[i+11e[il-wprx[i+1]tpr[i])/(vx[i+1]-wprx[i+1])},
{xprli+1]=xprlil+vprx[i+1]1*(tpr[i+1]-tpr[il]) ,x[i+1]=x[i]+vx[i+ 11*(t[i+1]-t[i1) },
If[Mod[i+1,2]==0,{ xem[i+1]1=(x[i+1]-xpe[i+1])*
Wprli+11/En,xprem[i+1]=(xpr[i+1]-x[i+1]1)W[i+1]/En},a=01}, {i,0,100}]

Fig.11 presents, in the exemplative case u=0.0005, the evolution of

A>=8,+8"5 at the times £, as a function of the mutual distance: 7= | x'2—x2| .
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The 1/# decrease of the short range repulsion potential in one dimension.

1I-1.4. The analytical solution of the equations of motion.

Theorems 11 allows one to deduce the spatial dependence of &, or

8. We recall that the total mass excess, A,=8,+8"; (/=0,1,2,...), is very
close to the mutual potential energy, U,, of the system. In short, we find
the generalization of equation [86],

_ A (A, +2m) 4’ —p” and 5. <Az (A, +2m)—p’ +u”
2%

(871§
v 2A, +m+m') 20A,, +m+m')

&3



Unified Interaction Through Boson exchange: ... 41

Thanks to theorems 10 and 12, we deduce the spatial dependence of
As and we directly write the final result as a function of the mutual
distance, n= X'»—x,|. This is the function, rewritten with usual units,
which interpolates exactly the dots of Fig. 11:
- A/ ==(m+m) +[m? + P2+ @’ + 0/ r?) ]2
' 4 +Hdm? Wt AN 7)Y
In that general formula, A>0 correspond to the repulsive case and

A<0 to the attractive case.

1II-3 Extension of the model to higher dimensions:
an application to the modified Kepler problem

It is interesting to extend the model to a two-dimensional interaction
and to compare the results to those obtained in the context of the Kepler
problem discussed in section II-3. For the sake of simplicity, we assume
that the attracting center is infinitely heavy and therefore at rest. The
simplification in that case is that the infinitely heavy center never emits
nor absorbs a boson. Only the moving particle repeatidly emits and ab-
sorbs the mediating boson which is regularly simply reflected by the center.
It seems unnecessary to reproduce Fig. 7 since the modifications are so
slight. At time ¢=f, the particle experiences a negative mass defect, 8:<0,
which is the mass equivalent of its attractive potential energy. Its momen-
tum is po and its position, with respect to the attracting center, C, is 7.
At time ¢=fy+g, the particle emits an antiboson of rest-mass W in the
direction of the center which reflects it so that it collides with the particle
at the later time, #=¢#,, at its new position, #,. It is then instantaneously
reabsorbed so that the particle experiences a modified negative mass de-
fect, 8,<0, and so on.

The evolution of the system is governed by the following sets of
equations (/=0,1,2,...),

(89abl  J[(7+8,) 2] = 4w, e vqi]”

pf =ﬁh—l +QJ-I;-.:
2 1/2 1/2 172
D ) i () e (R B
Py =T, —~ 4l
= iy = 2 3 1/2
[9151 b-l r;+[ =}‘£ +1t!+|(tr+, _fa)/[(}n’ +n,.+|)]
o 30, 3 H2
?"_ +r:+l 24."1-1{!:1-\ —[f]/[“ +4:’+|]
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I11-3.1. The solution of the modified Kepler problem.

To save space, we have not tried to solve this problem completely
analytically, Rather, we content ourselves with a preliminary discussion which
is sufficient to obtain the numerical solution in a recursive way. We use
again the following notation,

;.: = (?; COS(P:"’} Sil’l(P,)

Two elementary constants of the motion exist once again, i.e. the total
energy, W, and the angular momentum, J. They may be written in various
equivalent ways,

[92] [(""‘f"'a;)z"'sz]“z=[m2+n21 —[u2+9‘f] =W
(93] X, =F KT, =F XD
Squaring ., in equation [89b] and combining with equation [92]
leads to
W 442,12 = =2 =W+ p2 - 24,5, F

an equation which allows one to find ¢,.,. Equation [89b] then furnishes 7, ..
Calculations which are similar to those of Section II-3.1 lead to a

relation which is equivalent to equation [62] in the photon exchange

model,

I +g7)

2.2 2.2
m qr'ﬂ_p' nn!

=i T

2.2 2.2
)2 i ql‘fl _u 1I:a'+1
+1

—(r +r
2 2 2
q,-|(m +nz+l)

p ;
a relation which may now be used to determine 7.,. The value of 7, is
then determined by equation [91] and we obtain fp., with the aid of
equation [90b]. A new cycle, in which 7 is replaced by 7/+1 can then be
started, achieving the recursive calculation of the main variables of the
problem.

We have tested numerically the solution, starting with initial condi-
tions which are similar to those of Section II-3.1, ie., rn=1, £=0, @=0,
p0=0.02, 8=-0.001 and O,=angle(#y,50)=1.2radians. The rest mass of the
mediating boson has been set to three distinct values: u = -0.00005, —
0.00010 and —0.00030, respectively. Special care must be taken to avoid
numerical instability. The results of the computations are displayed in Fig.
12a,b,c. They show that the motion is quasiperiodic with a rotation of the
perihelion of the ellipse which increases with p. It also increases if the
initial conditions are modified so that the particle enters into the critical
domain near the origin.
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Three examples of modified Keplerian trajectories. (u=-0.00030)

IV. Interpretation of the results and conclusions

We have shown that recursive dynamics, based on repeated boson
exchange between interacting particles, effectively leads to well defined
laws of motion. The obtained results coincide with or differ from the
classical ones in various aspects, aspects which deserve a careful review.
Herein we provide an extended discussion of various interesting aspects of
the problem.

All our calculations are exact and relativistically invariant. This means
that the trajectories that we obtained may be compared to those which are
calculated in the frame of the theory of special relativity. For example,
considering the Kepler problem with a fixed center, we have retreived the
classical precessing ellipse in the case of photon exchange. Moreover we
have verified that the rotation of the perihelion corresponds to the ex-
pected value, with the only condition being that the particle does not
enter into the critical region defined by equation [68].

To our knowledge, no exact solution of the same problem is known
if the center is itself movable. This results because the magnetic effects are
automatically superimposed on the Coulomb interaction, a superposition
which makes the equations much more difficult to solve. In our model we
have found, in that case, that the simultaneity condition becomes velocity-
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dependent. The problem is however numerically solvable and we do not
expect severe discrepancies compared with the results of customary special
relativity in the non-critical domain.

We have not considered the three body problem. Of course a solution
can only be obtained numerically because the general problem is known to
be chaotic. In our model the origin of that chaotic behaviour can be viewed
as the consequence of the non-commutativity between successive collisions
between the particles and the mediating bosons. Indeed, each particle re-
ceives bosons emitted by the two others. A slight alteration of the initial
conditions may have the consequence that, at some time later, the order of
two successive collisions is modified such that the particles pursue their own
trajectory with different momentum and energy. This sensitivity to initial
conditions is one of the ingredients of chaos. Special cases already known
by Lagrange are however exactly solvable. Although we have not verified it,
we expect that a somewhat relaxed simultaneity condition may be restored
in these special, highly symmetric, configurations.

We observe that, in our model, the exact calculations are purely
algebraic, contrarily to what happens in relativistic mechanics in which the
equations of motion require proper integration. A non-relativistic version of
this model could perfectly well have been discovered by Newton in order
to explain accurately the motion of the planets. We will never know how
physics would have evolved in such a case.

An essential characterisitics of our model is the absence of distinction
between the interaction law and the law of motion. In classical physics
one writes first an evolution equation, usually in the form F=dp/dt, and
then one incorporates the force law. Our model is simply based on the
conservation of the relativistic energy-momentum four-vector without any
assumption concerning the shape of an eventual force law. In fact no force
law is necessary because there is no force at all! Similarly, the acceleration
does not play any crucial role in the model.

In the same way that no force field exists in our model, there is no
need for a potential law. The entire model is sustained by the existence of
mass deviations carried by the interacting particles, either in excess or in
defect, according to the type of interaction, repulsive or attractive. The
distant interaction is then understood as the consequence of repeated ex-
changes of mediating bosons. No fundamental distinction is made in this
respect between the electric and the gravitational interactions. This opens
interesting views about a possible unification of both types of interactions.
For example the magnetic effects which are easily observable in electrody-
namics would find an automatic equivalent in the gravitational two-body
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problem, Easy estimates however indicate that it would be a very slight
correction in usual astronomical problems.

Because interacting particles experience very short uniform rectilinear mo-
tion between successive collisions, it becomes evident that the solutions which
are obtained in the frame of our model must differ, in some way, from the
classical solutions. It is only in the limiting case where ¢, the speed of light,
would tend to infinity, that we should retreive the usual differential equations
of motion. This results because the time recursion step would tend to zero.
The expected discrepancy is however small unless the particles enter the
critical domains defined by equation [68]. We may estimate the difference by
observing that the total mass deviation, Ay, = &, +82, is equivalent to the
usual potential energy, Uy, far from the origin. This means that the asymptotic
behaviours of A and U are identical. In case I, for photon exchange, we have
effectively retrieved the 1/r asymptotic decrease. However, in case II, for finite
mass boson exchange, we have found a short-range potential law [88] which
exhibits an unexpected 1/# asymptotic behaviour. This result is a little surpris-
ing because it is often thought that finite rest mass boson exchange should
necessarily lead to a Yukawa-type''” potential, U(r)=Aexp(-Ar)/r. On contrast,
our calculations are void of approximation so that we have no apparent
reason to doubt the 1/ asymptotic law. The complete analysis of the situa-
tion near the origin is much more delicate because the approximation, AU, is
no longer valid. Let us consider in greater detail the example of the photon
exchange. Equations [32] and [56] reveal that the usual potential energy, U,
is equal to v, +V, in one dimension, and to v, in the fixed center Kepler
problem. The exact calculation of these quantities in terms of the distance
between the interacting particles is possible in both cases.

For example, we have found respectively,

/ 2 2
2mm'\ry_yry, Hm A, m

U, =v, +Vlz; =C T
mm' /7, ,r, —A 7
and,
h=vi= 1
Y 1+ H 4 )

It should be noted that the retarded effects, r,.., are absent in the
corresponding formulas for the total mass deviation A,. A first interesting
point is that the laws that are found for U are not universal, in contrast
to what happens with A. This clearly means that, in this model, the mass
deviation rather than the potential energy is the essential quantity. If one
persist in being interested in U, another essential point is its r-dependence
near the origin which avoids the usual 1/r singularity. That modified po-
tential law has no consequence in the study of solar gravitation because
the critical distance has been found to be very short in this case. The only
restriction might occur shortly after the bigbang, if one agrees that all the
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universe was concentrated in a very small space. This paper will not
discuss the possible cosmological implications of the modified behaviour of
U near the origin. We simply mention that the discussion is open to an
eventual modification of Newton’s laws in the context of the unsolved
problem of the missing mass in the universe. The modified law also
deserves attention in the domain of electrodynamics. In particular, it can
reasonably be expected that the 25,,-2P;, degeneracy observed in the
resolution of Dirac’s equation should be broken, leading to a theoretical
estimate of the Lamb shift in the hydrogen atom. This degeneracy is
indeed characteristic of the 1/7 potential law. That the 1/7 singularity of U
near the origin has been removed might also be of interest in all the
domains where it is thought to be troubleshooting.

Let us however mention that, at very short distances, we leave the
classical domain. A discrepancy may arise in the quantum domain when
the distance approaches the de Broglie length of the interacting particles
so that a complete understanding of what really occurs very near the
origin can be reached only when the variable number of mediating bosons
is taken into account''",

We have systematically neglected the eventual radiation effects when
the particles accelerates in an inertial frame.

As a final remark, we would like to emphasize that we have implicitely
assumed that the total energy of an interacting particles may be written as,

[94] W = [(m+8)c+3p)' 2.

In other words, we have considered that the mass deviation possesses the
inertial property so that we must include it in the rest mass of the interacting
particle before calculating its kinetic energy. This point of view may be
justified a posteriori by the neatness of the results that we have obtained. It
may also be justified in a more heuristical way as follows. Everybody agrees
that the inertial rest mass, #7, of a system of interacting particles, say two, is
lower than the sum, #, of the inertial masses of its constituents. Examples are
the hydrogen atom or the deuteron. When such a system moves at a velocity,
v, its relativistic total energy is classically calculated with equation [94] on the
basis of the modified inertial mass, #'=m+8. Now, if we consider one inter-
acting particle inside the system, it seems reasonable to calculate its total
energy, in the same way, i.e., according to formula [94].

In conclusion, recursive dynamics considers that interacting particles
carry positive or negative mass deviations. In order to try to recover their
original rest-mass, they regularly exchange bosons and evolves therefore in
space according to the relativistic conservation laws of energy and momen-
tum. The methodology is applicable to all kind of interactions so that a
door is open for a new way of considering their unification.
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Appendix A.

We prove, in the context of the Kepler problem studied in section II-
3, that the following quantity is invariant for all 7 = 0, 1, 2, ... ,

(A1] 2Wrr | cos [(@,., —9,)/2] = mir.., +1) = H/m

IMED|

Proof: we first eliminate j, between [53b] and [54b] and then substi-
tute v; given by equ. [53al,

. - 1/2 /2 N
(A2l —m, =(v, +v, ) _( [m +Tl:m] ——[m +7; } +2WJ;;.
On the other side, eliminating (t.;-t) between equ. [55a] and [55b]
funishes

11-1

., ot 412, =G =)/ )

Squaring that equation allows one to extract m..?> so that one finds

[A3] r,,, =m/2)F ?;/[ rr.) cos 0., - /2]]

:‘1

That relation is useful to calculate successively,
(Ad] 7, +[m2+7til]”2?! =(m/2)F,  +r,.7 /[ ) r:os[((p,H —(p,)/Z]]
(451 &, = [ + 1]k =/ DG, 41 7)) o (0, - ,.)/2]]

Eliminating %, and 7., between equ. [A2], [A4] and [A5] and scalar
multiplying the result by 7 leads to

[A6] ZW\E = m\J:cos[(cpr. -0, }/2]+ 1, cos[((p,-+l -Q;) /2]
Multiplying that equation by the sign-conjugate of its right-hand side
and rearranging the order of the terms gives
2Wr,_r, l”ms[ 0, -0, /2] mr,_, COS [(p, @, /2]—
2Wirr, cos{ Q. =0, /2]—??:?;‘1 cos [ Q. 9, /2]

H r+]

On the other side, is not too difficult to prove that the following
relation holds, as a consequence of equ. [60]:

[A7]

[AB] 7 tr —r =1, =1, COSE[((P;' -0, )/2]_ Tint COSZ[(IP,-” — 0, )/2]

i

Eliminating the cos’-terms between [A7] and [A8] leads to the invari-
ant expression which achieves the proof.
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Appendix B.

Here we prove theorem 7. We start by squaring equ. [A4]:

12,

2
51 (ﬁ,+l+[m2+ﬂf+1] n-) =mralr,
On the other side, combining equ. [53a] and [53b] leads to
(B2] b, =T, +[m2 +f:f+1]m£. -Wr

Comparing [B1] and [B2], we get

(B3] (p, + W) =p? + W +2Wr - p =m’r, /7,

or equivalently, on account of [53b] and [A4],

[B4] [rra=12/n?] =W +7 3/ m

We modify progressively the invariant [63], using successively [B4],

[B3] and finally [53b]:

—H = n(r,, +?;)—2Wm[rr

i+l

=1, p? +rW? +2Wp, 7+ m’r, = 2Wr W —2W5, - p, =1,(m* + p} = W?)

—jz/mz]w =m'r,

r+l

The final result may be rewritten as:

r(2md+87) = H

a result which proves theorem 7.

Appendix C.

+m’r, = 2W e, W +7, - p,)

The proof of theorem 9 results because the z and the 7' obey to the

first order recurrence,

(m/ (2, =W ) (2, =)= 140n /) =) (=, - uHl
Its solution is immediate as,

12

m?(z,,, — W) =m' (25, —1°)

(C1] {sz_u:!:zlz, —u
Hence one has, '

8, 0m+8,)-p> =8, 2m'+8,)—p”

b4
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