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ON COMPLEX OSCILLATION THEORY, QUASI-EXACT

SOLVABILITY AND FREDHOLM INTEGRAL EQUATIONS

YIK-MAN CHIANG AND GUO-FU YU

Abstract. Biconfluent Heun equation (BHE) is a confluent case of the general
Heun equation which has one more regular singular points than the Gauss hy-

pergeometric equation on the Riemann sphere Ĉ. Motivated by a Nevanlinna
theory (complex oscillation theory) approach, we have established a theory of
periodic BHE (PBHE) in parallel with the Lamé equation verses the Heun
equation, and the Mathieu equation verses the confluent Heun equation. We
have established condition that lead to explicit construction of eigen-solutions
of PBHE, and their single and double orthogonality, and a related first-order
Fredholm-type integral equation for which the corresponding eigen-solutions
must satisfy. We have also established a Bessel polynomials analogue at the
BHE level which is based on the observation that both the Bessel equation
and the BHE have a regular singular point at the origin and an irregular sin-

gular point at infinity on the Riemann sphere Ĉ, and that the former equation
has orthogonal polynomial solutions with respect to a complex weight. Fi-
nally, we relate our results to an equation considered by Turbiner, Bender
and Dunne, etc concerning a quasi-exact solvable Schrödinger equation gen-
erated by first order operators such that the second order operators possess a
finite-dimensional invariant subspace in a Lie algebra of SL2(C).

1. Introduction

The Biconfluent Heun equation (BHE)

(1.1) z
d2u

dz2
+
(

1 + α− βz − 2z2
)du

dz
+
(

(γ − α− 2)z − 1

2
[δ + (1 + α)β]

)

u = 0,

has a regular singular point at z = 0 and an irregular singular point at z = ∞. The
irregular singular point is a result of coalesces of two finite regular singular points to
that at z = ∞ on the Riemann sphere from the four regular singular points of the
general Heun equation (GHE) [34] which includes the classical Lamé equation as a
special case [59], [36]. Thus, the z = ∞ has an higher irregularity rank than the
confluent hypergeometic equation and hence its special case, the Bessel equation.
Therefore, the BHE plays analogues roles as the confluent hypergeometric equation
and the Bessel equation in physical sciences but at an higher level. Indeed, the
BHE were studied in several disconnected cycles over different periods between
1930s-1980s (Dunham [22], Masson [40], Turbiner [51], Bender and Dunne [10],
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González-López, A., N. Kamran and P. J. Olver [29], [30], etc), and in the words
of Masson [40] that the BHE has a “checked history”. However, the understanding
of the equation as well as the others that belong to the Heun-class is still far from
satisfactory.

Hautot [33] shows that the BHE possesses a set of polynomial eigen-solutions
{Pm,µ(α, β; x)} that can be written as a very special linear combination of Hermite
polynomials. Urwin [53] showed that these polynomials are orthogonal with respect

to the real weight xα e−βx−x2

supported on the positive real axis in the L2(0, +∞),
such that for each integer m ≥ 0

(1.2)

∫ +∞

0

tαe−βt−t2Pm, µ(α, β; t)Pm, ν(α, β; t) dt = δµ, ν hm,µ, ν ,

where 0 ≤ µ, ν ≤ m holds and the value of hm is generally not known (see also [45,
p. 206] and [21]). It is clear that the orthogonality of these polynomials is different
from the conventional orthogonality usually found in the literature.

The present paper takes a value distribution (Nevanlinna) theory approach to
the periodic differential equation

(1.3) f ′′(z) +
(

K4e
4z +K3e

3z +K2e
2z +K1e

z +K0

)

f(z) = 0,

Kj ∈ C, j = 0, 1, 2, 3, 4. We realize that the (1.3) is a periodic analogue of the
BHE when we were trying to resolve a complex oscillation problem (see below).
The coefficients {Kj} in (1.3) are related to the α, β, γ, δ of (1.1). We abbreviate
the periodic BHE as PBHE. The key observation here is that eigen-solutions of the
BHE must correspond to complex non-oscillatory solutions (see §2) to the PBHE.
Besides, the PBHE should be compared with the classical Lamé equation

(1.4) f ′′(z) + [h− n(n+ 1) k2sn2z] f(z) = 0,

and the Mathieu equation

(1.5) f ′′(z) + (a+ k2 cos2 z) f(z) = 0

as periodic forms of a special case of the Heun equation and also a special case
of the confluent Heun equation respectively. Historically, the Lamé and Mathieu
equations which have transcendental meromorphic/entire coefficients were derived
and studied separate from their algebraic forms differential equations since the 19th
century. However, we emphasis that the singularity structure is fundamentally
different from the BHE. For example, the BHE has a regular singular point at the
origin and an irregular singular point at ∞. However, all points in C are ordinary
points for the PBHE. Analogues situations apply to Lamé equation in relation to
the Heun equation and Mathieu equation in relation to confluent Heun equation.

The advantage of having established a periodic form of the BHE enables us
to develop a theory of Bessel polynomials at the BHE level in parallel with Krall
and Frink’s work [37]. Indeed, we have found that when the Hautot orthogonal
polynomials are written in the reversed form, then these polynomials are orthogonal
with respect to a countably infinite family of complex measures {ρn(z)} that are
supported on the unit circle. Our approach indicates that the BHE is an Heun
level analogue of the Bessel equation, and the reversed polynomials that we have
identified thus correspond to the classical orthogonal Bessel polynomials which have
a complex measure and they are supported on the unit circle |z| = 1.
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We then show that the complex non-oscillatory solutions of the PBHE (1.3) are
written in terms of the reversed Hautot polynomials composed with an exponential
function, which can be considered as the classical Lamé polynomials analogues to
the Lamé equation (1.4). Whittaker [56] appears to be the first who showed that
the Lamé polynomials satisfy the following Fredholm integral equation of the second
kind :

(1.6) y(z) = λ

∫ 2K

−2K

Pn(k sn z sn t) y(t) dt,

where the Pn(t) is the n−th Legendre polynomial and the λ the corresponding eigen-
value, and 4K the real period of the Jacobian elliptic function sn z. Moreover, these
Lamé polynomials possess both single and double orthogonalities with respect to
appropriate weights. We refer the reader to Arscott’s classic [3, Chap. 9] and [45]
for more recent development of the topics. In this connection we derive a Fredholm
equation of the second kind for the PBHE which exhibits new phenomenon of
having a sequence of eigen-value pairs in contrast to the single-sequence eigen-
values usually encountered, for example, for both the Lamé and Mathieu equations.
We further show that our complex non-oscillatory solutions to (1.3) written as
a composition of the Hautot polynomial and exponential function, like the Lamé
polynomials, which is the composition of Legendre polynomials and a Jacobi elliptic
function, are orthogonal on [−2K, 2K] and they are also double orthogonal over
[−2K, 2K]× [K − 2iK ′, K +2iK ′] (with respect to a suitable weight), where K is
the real period of sn z, also have both the single and double orthogonality for the
PBHE over [0, 2πi] and [0, 2πi]× [π, π + 2πi] respectively.

Finally we consider the following Schrödinger differential equation coming from
mathematical physics:

(1.7) Hψ = Eψ,

where

(1.8) H = − d2

dx2
+

(4s− 1)(4s− 3)

4x2
− (4s+ 4J − 2)x2 + x6.

is amongst the equations listed in [51] in which Turbiner gave a classification of
second order differential operators generated by first order operators such that
the second order operators possess a finite-dimensional invariant subspace in a Lie
algebra g of SL2(C). Such second order differential equations are called quasi-
exactly solvable. Physicists encountered many quasi-exactly solvable Schrödinger
equations from a wide range of physical models [52].

In another study, Bender and Dunne [10] assumes when a power series solution
is written in the form

(1.9) ψ(x) = e−
x4

4 x2s−1/2
∞
∑

k=0

(

− 1

4

)k Pk(E)

k! Γ(n+ 2s)
x2k,

then the expansion coefficients satisfy the three-term recursion

(1.10) Pk(E) = EPk−1(E) + 16(k− 1)(k− J − 1)(k+2s− 2)Pk−2(E), k ≥ 2,

where

(1.11) P0(E) = 1, P1(E) = E,
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which possesses a remarkable factorization property that when the subscript exceeds
the critical value J , then

(1.12) Pn+J (E) = PJ (E)Qn(E), n ≥ 0

hold. In addition, Bender and Dunne observe [10] from (1.10) (see [2]) that the
{Pn(E)} forms a family of orthogonal polynomials. These polynomials are now
called Bender-Dunne polynomials.

We identify that the above Turbiner equation (1.7) is essentially a special case
of the BHE where the K3 = 0 in the PBHE. In fact, the Bender-Dunne equation
(1.7) is transformed to the equation

(1.13) zφ′′(z) + (−2z2 + 2s)φ′(z) +
(

(2J − 2)z +

√
2

4
E
)

φ(z) = 0,

which is a special case of the BHE (1.1) via the transformations

(1.14) z =
1√
2
x2, ψ(x) = exp

(

− 1

4
x2
)

x2s−1/2φ(z).

Moreover, we have identified that when the termination of (1.9) corresponds to
a special case of the Hautot polynomials. So our main focus here is properties
of those terminating solutions from (1.9). As a results we have verified that the
general BHE has quasi-exactly solvable phenomenon, and we have extended many
of the results obtained by Bender and Dunne [10], such as the expansion (1.9) and
the three-term recursion (1.10) including the factorization property (1.12) to those
of the BHE. We have also transformed the Turbiner equation (1.7) to its periodic
form based on our PBHE. As a result, we have found a Fredholm equation of the
second kind, single and double orthogonality for the periodic Turbiner equation as
corollaries of what we have established for the PBHE, which maybe of independent
interest.

This is the first of a series of papers that studies the fundamentals of the
BHE/PBHE from the viewpoint of the complex oscillation theory. The present
paper shows how the application of the complex oscillation theory can lead us to
(i) identify the reversed Hautot polynomials are a Heun analogue of the classical
Bessel polynomials, the orthogonality is supported on the unit circle |z| = 1 with
respect to a complex measure, (ii) the eigen-solutions to the PBHE with respect to
having finite exponent of convergence of zeros λ(f) < +∞ (see (2.2) in §2) can be
given in terms of the exponential type Hautot polynomials (it composes with ex-
ponential function), thus generating novel eigen-values pairs that characterise the
corresponding eigen-solutions, (iii) show that these exponential-type Hautot poly-
nomials are eigen-solutions to a new Fredholm type homogeneous integral equation
of the second kind, (iv) a single orthogonality of the exponential-type Hautot poly-
nomials, and (v) a double orthogonality for products of the exponential-type Hautot
polynomials.

This paper is organized as follow. A brief outline of the complex oscillation theory
and the connection to (1.1 will be given in §2. §3 will be devoted to describing
basic properties of the classical generalized Bessel polynomials and to show how
one can construct Bessel polynomials at the Heun level. We show the reversed
Hautot polynomials are orthogonal on the |z| = 1 with respect to a complex weight
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and its construction in §4). The convergence of the complex weight is proved in
§5. The next three sections of the paper will be devoted to study the complex
oscillation theory for PBHE against the exponential type Hautot polynomials. So
§2.2 will give results for complex non-oscillatory solutions to the PBHE, followed
by deriving a Fredholm integral equation of the second kind in §7. The single and
double orthogonality of the exponential type Hautot polynomials and products of
any two such polynomials respectively will be given in next section §8. We return
to the Turbiner equation (1.7–1.8) studied by Bender and Dunne in §9 where we
derive a three-term recursion relation of the expansion coefficients similar to (1.9)
for the BHE from which we exhibit expansion factorisation of coefficients similar to
(1.12), thus showing that the BHE also exhibits the quasi-exact solvable property
elaborated by Bender and Dunne. In fact, the BHE is amongst the equations listed
in [51, (3–5)] to be quasi-exact solvable from Lie algebraic viewpoint. The §10
rewrites previous results in §6 and §8 for PBHE in the special case for Turbiner’s
equations in the periodic forms.

2. Complex Oscillation Theory

The theory utilizes classical Nevanlinna’s (Picard’s) value distribution theory
over C [32] to study the value distribution of solutions of the Schrödinger-type
linear ordinary differential equations of the form

(2.1) f ′′(z) +A(z)f(z) = 0,

where A(z) is a transcendental entire function on C. One can deduce that z = 0
could be an exceptional value in the sense of Picard and hence Nevanlinna. It
turns out that the study of zero distribution of f is of particular importance. More
specifically, let n(r, f) counts the number of zeros of the solution f of (2.1) in a
disc of radius r. It is fundamental that

(2.2) λ(f) := lim
r→+∞

logn(r, f)

log r
≤ lim

r→+∞

logT (r, f)

log r
= ρ(f) = +∞

hold whenever A(z) is transcendental and for any non-trivial solution. Here the
λ(f) on the left side of (2.2) is called the exponent of convergence of the zeros of
the solution f(z), while the λ(f) on the right side is called the Nevanlinna order
of f [32, 38]. Bank and Laine then [6] developed an oscillation theory for the (2.1)
with periodic coefficient A(z) = B(ez) where

(2.3) B(ζ) =
Ks

ζs
+ · · ·+K0 + · · ·+Kℓζ

ℓ,

and Kj (k = s, · · · , ℓ) are complex constants. They have shown by using Nevan-
linna theory [32], that λ(f −a) = +∞ for all finite non-zero a ∈ C and for all entire
solutions of (2.1) for (2.3). The Picard theorem asserts that a = 0 may be the only
exceptional value. That is, this solution could have λ(f) < σ(f) = +∞. Besides,
such an exceptional solution assumes the semi-explicit representation [6]

(2.4) f(z) = ψ(ez/h) exp
(

dz + P (ez)
)

where h = 2 if ℓ is odd and h = 1 otherwise, ψ(ζ) is a polynomial, P (ζ) is a Laurent
polynomial and d is a constant.

Previous studies by the one of the authors with others for certain periodic special
cases of (2.1) and its non-homogeneous analogues [15, 16, 17] only involved the
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use of Bessel functions, Coulomb-wave functions, Lommel functions and related
functions. As a results, new value distribution (global) properties for these classical
special functions were found. In the present investigation, a new class of orthogonal
polynomials at the BHE level are found and this also leads to a new Fredholm-type
integral equation for the reversed BHE. The main results obtained here will be used
to study the corresponding complex oscillation problems elsewhere.

In order to better appreciate the role played by the complex oscillation theory in
the study of BHE, let us review previous results in [15] in which Ismail and one of
the authors [15] where able to develop suitable special function tools to identify that
the polynomial ψ(ζ) corresponds to the equation (2.1) for (2.3) with (s, ℓ) = (0, 1)
considered earlier by Bank, Laine and Langley in [7] belongs to reversed Bessel
polynomial. While the ψ(ζ) in (2.4) of (Morse-type equation) equation (2.1) for
(2.3) with (s, ℓ) = (−2, 0), that is,

(2.5) f ′′ +
(

K−2e
−2z +K−1e

−z +K0

)

f = 0,

was considered in [6] is a generalized Bessel polynomial. Indeed, the criterion in
terms of the coefficients in (2.5) and the special solution representations found in
[15] rendered the complex oscillation problem for the case (s, ℓ) = (−2, 0) com-
pletely solved [8]. However, the complex oscillation problems for the majority of
other cases (s, ℓ) remain unsolved. The first author observed that the equation
[15, (3.3)] contains, as a special case, the periodic form (1.3) of BHE [45, p. 199].
More specifically, the BHE (1.1) corresponds to the case of (s, ℓ) = (0, 4) in (2.3).
According to the theory of Bank and Laine, a solution f of equation (1.3) with
λ(f) < +∞ admits a solution of form (2.4) with h = 1. This suggests the polyno-
mial component ψ(ζ) of those solutions f for the equation (1.3) with λ(f) < +∞
may come from certain special functions with important properties, such as or-
thogonality, etc. We show this is indeed the case below with a “special property”
replaced by quasi-exact solvability [10], but with respect to a complex weight sup-
ported on the unit circle |z| = 1. In fact, these eigen-solutions of the BHE when
reversed is a new class of orthogonal polynomials, a phenomenon that is analogues
in the classical theory for the (generalized) Bessel polynomials that are related to
Coulomb Wave equation and Bessel equation.

3. Bessel polynomials at Biconfluent Heun equation Level

Let us recall that although the Bessel equation of order ν

(3.1) x2f ′′(x) + xf ′(x) + (x2 − ν2)f(x) = 0,

is not known to admit any polynomial-type eigen-solution, but the MacDonald
function Kν(z) [54, p. 80] obtained from the equation (3.1) via a rotation by π

2

induces a polynomial θn(z) of degree n when ν = n+ 1
2 :

(3.2) Kn+ 1

2

(z) =

√

π

2
z−n− 1

2 e−zθn(z).

The degree n polynomial θn(z), called the reverse Bessel polynomial of degree n
[31], does satisfy a differential equation

(3.3) z θ′′(z)− 2(z + n) θ′(z) + 2n θ(z) = 0.
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This equation has a regular singular point at z = 0 and an irregular singular point
at z = ∞ as is the case for the Bessel equation (3.1) itself. Reversing this equation
by the transformation yn(z) = znθn(

1
z ) leads to the equation

(3.4) z2
d2y

dz2
+ (2z + 2)

dy

dz
− n(n+ 1)y = 0,

where the polynomial solutions yn(z), called Bessel polynomial of degree n. This
equation is called Bessel polynomial equation which has an irregular singular point
at the origin and a regular singular point at ∞. The so-called generalized Bessel
polynomial equation

(3.5) z2
d2y

dz2
+ (az + b)

dy

dz
− n(n+ a− 1)y = 0,

where a 6= −1, −2, −3, · · · and b 6= 0, also shares this property. Krall and Frink
[37] called {yn(a, b; z)} the generalized Bessel polynomials, and showed that they
are orthogonal on the unit circle |z| = 1 with respect to a complex weight

(3.6) ρ(z) =
1

2πi

∞
∑

k=0

Γ(a)

Γ(a+ n− 1)

(

− b

z

)k

,

which is given in an infinite Laurent series. Although the Bessel polynomials were
formally named by Krall and Frink in 1949 [37], they appeared in an earlier work of
Bochner [11] that they along with the Jacobi, Laguerre and Hermite polynomials
are the only orthogonal polynomials that belong to the so-called Sturm-Liouville
class polynomials. They also appear in the work of Burchnall and Chaundy about
commuting differential operators [13] in 1931 and in complex oscillation problems
by Bank, et al [6, 7] as identified by Chiang and Ismail [15], see also Andrews,
Askey and Roy [2], Grosswald [31] and Szegő [50] for their recent development.

It follows from the complex oscillation theory that the equation (2.1) with (2.3)
such that s = 0 in (2.3) can be transformed, via x = ez, Ψ(x) = f(z), to the
equation [15, (3.2)]:

(3.7) x2Ψ′′(x) + xΨ′(x) +
(

ℓ
∑

j=0

Kjx
j
)

Ψ(x) = 0,

which we call a generalized Bessel equation. When ℓ = 4, the function ψ(x) defined
by

(3.8) Ψ(x) := x
α
2 e−

β

2
x− 1

2
x2

ψ(x)

satisfies the equation (1.1) (see [21, p. 62]). Hence the function ψ(x) plays the
role of θ(z) in (3.2). We now show that the reverse polynomial of ψ(x) of degree n,
that is

(3.9) Y (x) := xnψ(1/x),

satisfies the differential equation

x3 Y ′′(x) + [(1− 2n− α)x2 + βx+ 2]Y ′(x)

+ [(α+ n)nx− βn− θ)]Y (x) = 0,
(3.10)

where

(3.11) θ =
1

2

[

δ + β(1 + α)
]

=
1

2

[

δ + β(1 + γ − 2− 2n)
]

.
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That is, the Yn(x) = Y (x) is an BHE analogue of the generalized Bessel polynomial
yn(a, b; z). Therefore, the equation (3.10) is the BHE analogue of the generalized
Bessel polynomial equation (3.5).

If the BHE (1.1) [45, pp. 203–206] admits a polynomial solution Pn, µ(α, β; x),
then it is necessary that γ − α − 2 = 2n holds. In fact, a power series (analytic)
solution is given by

(3.12) N(α, β, γ, δ; x) =

∞
∑

k=0

Ak

(1 + α)k k!
xk,

where (α)k = Γ(α+ k)/Γ(α), and the coefficients Ak, k ≥ 0 satisfy the three-term
recursion formula:

Ak+2 =
{

(k + 1)β +
1

2

[

δ + β(1 + α)
]

}

Ak+1

− (k + 1)(k + 1+ α)(γ − α− 2− 2k)Ak, k ≥ 0(3.13)

where

(3.14) A0 = 1, A1 =
1

2

[

δ + β(1 + α)
]

.

Clearly the three-term recursion (3.13) terminates if and only if

(3.15) γ − α− 2 = 2m, Am+1 = 0,

simultaneously, where m is some non-negative integer. It is also easy to see from
induction that Am+1(δ) is a polynomial of δ of degree m + 1, hence possessing
at most m + 1 roots δmν , ν = 0, 1, · · ·m at degree m. When the series solution
terminates, then we write

(3.16) Pm, ν(α, β; x) = N
(

α, β, α+ 2(m+ 1), δmν ; x
)

0 ≤ ν ≤ m,

for m = 0, 1, 2, · · · . We note that when α+1 > 0 and β ∈ R, then the m+1 roots
are real. When all these roots are simple, then the polynomial solutions described
are precisely those orthogonal polynomials described in (1.2) (see [45, §3.3]).

4. Construction of a complex weight I

Since Pn, µ(α, β; x) exhibits quasi-exact solvability, so is its reversed polynomial

(4.1) Yn, µ(x) = xnPn, µ(α, β; 1/x).

We now show that these polynomials {Yn, µ(x)} are orthogonal with respect to a
complex weight w(z) supported on the unit circle |z| = 1, in much the same way
as that the generalized Bessel polynomials do.

Theorem 4.1. Let ρ(z) = ρn(z) =
∑∞

k=0 akz
−k be a formal series such that the

coefficients ak satisfies

(1 + 2n+ α) a1 − βa0 = 0,(4.2)

(2− k + 2n+ α) ak − βak−1 − 2ak−2 = 0, k = 2, 3, 4, · · ·(4.3)

Then for each integer n ≥ 0, {Yn, µ(x)} satisfies, the orthogonality

(4.4)

∫

C

Yn, µ(t)Yn, ν(t) ρn(t) dt = 0,
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whenever, µ 6= ν for 0 ≤ µ, ν ≤ n, where C is any simple closed curve that surrounds
the origin. In particular, if β = 0 in (4.2-4.3) then we have the weight function
ρn(x) in closed form

(4.5) ρn(z) =

∞
∑

k=0

Γ(1− n− α
2 )

Γ(k − n− α
2 )

(

− 1

z2

)k

.

Proof. We first derive the weight function ρn (4.5) and leave its convergence to the
next section where more detailed analysis of the series is needed. We adapt a well-
known procedure, see for example the well-known [37], to find a complex weight for
the reverse BHE (3.10). The first step is to construct a factor σ(z) that makes the
(3.10) self-adjoint. That is, σ(z) satisfies the first order differential equation

(4.6)
(

z3σ(z)
)′

= [(1− 2n− α)z2 + βz + 2]σ(z).

Hence

(4.7) σ(z) = z−(2+2n+α)e−
β

z
−

1

z2 .

However, this weight is branched unless 2+2n+α is an integer. This suggests that
we aim for a weight, depending on n, in the formal series

(4.8) ρ(z) = ρn(z) =

∞
∑

k=0

akz
−k,

that satisfies the differential equation

(4.9)
(

z3ρ(z)
)′ − [(1− 2n− α)z2 + βz + 2] ρ(z) = (2 + 2n+ α)

(

− n− α

2

)

z2

instead. Without loss of generality, we may assume a0 = −n − α
2 . Then one can

easily verify that

(z3ρ(z))′ − [(1− 2n− α)z2 + βz + 2]ρ(z)− (2 + 2n+ α)
(

− n− α

2

)

z2

= [(2 + 2n+ α)z2 − βz − 2] ρ(z) + z3ρ′(z)− (2 + 2n+ α)
(

− n− α

2

)

z2

=

∞
∑

k=0

(2− k + 2n+ α) akz
−k+2 − β

∞
∑

k=0

akz
−k+1 − 2

∞
∑

k=0

akz
−k

− (2 + 2n+ α)
(

− n− α

2

)

z2

= [(1 + 2n+ α)a1 − βa0]z

+
∞
∑

k=2

[(2 − k + 2n+ α) ak − βak−1 − 2 ak−2]z
−k+2,

the coefficients ak satisfy the following three-term recurrence relation:

(1 + 2n+ α) a1 − βa0 = 0,

(2− k + 2n+ α) ak − βak−1 − 2ak−2 = 0, k = 2, 3, 4, · · ·
This gives the weight function as asserted in the Theorem when β 6= 0. Unfortu-
nately, as in the cases of similar consideration related to Heun equation, at least
three-term recurrence will be obtained, thus making explicit expression difficult to
find. The convergence of the (4.8) will be established in §5 where a detailed ac-
count on series defined by three-term recurrence will be presented. In the case when
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β = 0, we easily see from the relations (4.2–4.3) that the odd terms a2k+1 = 0. We
set a2k = (−1)kbk, then from the relation (4.3) we have

(4.10) bk =
1

k − 1− (n+ α/2)
bk−1, k = 1, 2, 3, · · · .

So we have

(4.11) bk =
1

(−n− α/2)k
b0 =

Γ(1− n− α
2 )

Γ(k − n− α
2 )
.

Then the complex weight (4.8) for the (3.10) could explicitly be written as

(4.12) ρn(z) =

∞
∑

k=0

Γ(1− n− α
2 )

Γ(k − n− α
2 )

(

− 1

z2

)k

,

which converges trivially at any z 6= 0.

We next show the orthogonality. We suppose Yn,ν and Yn,µ are polynomial
solutions of (3.10) with θ = µ and θ = ν respectively. That is,

x3Y ′′

n,ν(x) + [(1 − 2n− α)x2 + βx + 2]Y ′

n,ν(x)

+ [(α + n)nz − βn− µ]Yn,ν(z) = 0(4.13)

Multiplying (4.13) throughout by the weight ρn(x) and applying the self-adjoint
differential equation (4.9) to the resulting equation yield

(

x3ρn(x)Y
′

n, ν

)′
(x) + (2 + 2n+ α)

(

n+
α

2

)

x2Y ′

n,ν(x)

+ [(α+ n)nx− βn− ν] ρn(x)Yn, ν(x) = 0,(4.14)

Multiplying the (4.14) throughout by Yn,µ(x) and integrating the resulting equation
along the unit circle U := {x : |x| = 1} yield
∫

U

(

t3ρnY
′

n,ν(t)
)′
Yn,µ(t) dt+ (2 + 2n+ α)

(

n+
α

2

)

∫

U

t2 Y ′

n, ν(t)Ym, ν(t) dt

+

∫

U

[(α+ n)nt− βn− ν] ρn(t)Yn, ν(t)Yn, µ(t) dt

= 0−
∫

U

t3 Y ′

n, ν(t)Y
′

n, µ(t) ρn(t) dt+ 0

+

∫

U

[(α+ n)nt− βn− ν] ρn(t)Yn, ν(t)Yn, µ(t) dt

=

∫

U

t3Y ′

n, ν(t)Y
′

n, µ(t) ρn(t) dt+

∫

U

[(α+ n)nt− βn− ν] ρn(t)Yn,ν(t)Yn,µ(t) dt.

(4.15)

Interchanging the roles of ν and µ yields a similar equation as (4.15). Then sub-
tracting this equation with (4.15) implies

∫

U

Yn,ν(t)Yn,µ(t) ρn(t) dt = 0

whenever ν 6= µ. This proves the orthogonality relation (4.4). �
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5. Construction of a complex weight II:
completion of the proof of Theorem 4.1

We now deal with the convergence of the formal series for the weight function
ρn(x) defined in (4.2-4.3):

(1 + 2n+ α) a1 − βa0 = 0,(5.1)

(2− k + 2n+ α) ak − βak−1 − 2ak−2 = 0, k = 2, 3, 4, · · ·(5.2)

Theorem 5.1. For each integer n, the weight function ρn(x) in Theorem 4.1,
defined by the formal power series (4.1) where its coefficients satisfy the three-term
recursion (5.1-5.2), converges everywhere in C except when z = 0.

In order to establish this claim, we utilize classical asymptotic theory results of
linear second order difference equations established by Poincaré, later refined by
Perron (1911) and Kreuser (1914). A detailed survey can be found in [28, §2] or
in Wimp [58]. For the sake of completeness, we state their results as stated in [28]
but tailored to our application below.

Theorem 5.2 (see [28]). Consider the second order difference equation

(5.3) yn+1 +An yn +Bn yn−1 = 0, n = 1, 2, 3, · · · ,

where Bn 6= 0 for all n. Suppose

(5.4) An ∼ Anα, Bn ∼ B nβ , AB 6= 0, α, β real; n→ ∞.

We then construct the polygonal path P0P1P2 in a Newton-Puiseux diagram where
the points P0, P1, P2 have coordinates (0, 0), (1, α), (2, β) respectively. We denote
the gradients of the straight line segments of P0P1, P1P2 by σ = α, τ = β − α
respectively. Then the followings hold

(1) If the point P1 lies above the line segment P0P2 (i.e., σ > τ), then the
difference equation (5.3) has two linearly independent solutions yn, 1 and
yn, 2, such that

yn+1, 1

yn, 1
∼ −Anσ,

yn+1, 2

yn, 2
∼ −B

A
nτ , n→ ∞.

(2) If the three points Pj , j = 0, 1, 2 are collinear (i.e., σ = τ = α), let t1, t2
be the two roots of t2 + At + B = 0, and |t1| ≥ |t2|. Then (5.3) has two
linearly independent solutions yn, 1 and yn, 2, such that

yn+1, 1

yn, 1
∼ t1n

α,
yn+1, 2

yn, 2
∼ t2n

α, n→ ∞,

if |t1| > |t2|. While if |t1| = |t2|, then

lim sup
n→∞

( |yn|
(n!)α

)
1

n

= |t1|

for all non-trivial solutions of (5.3).
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(3) If P1 lies below the line segment P0P2, then

(5.5) lim sup
n→∞

( |yn|
(n!)

β
2

)
1

n

=
√

|B|

for all non-trivial solutions of (5.3).

Proof. Let us apply part (3) of the above theorem to show that the formal series
(4.8) does converge. To do so let us first rewrite the three-term recurrence relation
(4.2-4.3) into the form
(5.6)

yk+1 +

(

κ

k − 1− 2n− η

)

yk +

(

2

k − 1− 2n− η

)

yk−1 = 0, k = 2, 3, 4, · · ·

where yk = ak defined above.
It is easily seen from (5.6) that we have α = −1, β = −1 and σ = −1 < 0 = τ

in (5.4). Hence the coordinates P1 = (1, −1) , P2 = (2, −1) implying that the
point P1 lies below the line segment P0P2. Thus the part (3) of the above theorem
applies. Thus, we deduce from (5.5) that

lim sup
k→∞

(

|yk|(k!)
1

2

)

)
1

k =
√

|B| =
√
2.

Thus given ε > 0 we can find an integer k0 depending only on ε such that

(5.7) |yk| <
(
√
2 + ε)k
√

(k!)
, k ≥ k0.

We deduce from Stirling’s formula that when k > k0

1

2

√
2πk

(

k

e

)k

< k! < 2
√
2πk

(

k

e

)k

.

We deduce for all finite X
∞
∑

k=k0

(2
√
2)k

√

(k!)
|X |k <

∞
∑

k=k0

(2
√
2)k

[

1
2

√
2πk

(

k
e

)k
]

1

2

|X |k

=

∞
∑

k=k0

√
2

(2π)
1

4 k
1

4

(

√

8 e

k

)k

|X |k.

It follows easily from the ratio test that the series

∞
∑

k=k0

(

√

8 e

k

)k

|X |k

converges uniformly for all finite X :

[8e/(k + 1)]
(k+1)/2

(8e/k)k/2
|X | =

(

8e kk

(k + 1)k+1

)

1

2

|X |

=

(

8e

k
(

1 + 1
k

)k+1

)
1

2

|X | → 0
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as k → ∞ for all X 6= 0. Hence the original weight function must converge for all
x 6= 0. This completes the proof.

�

6. Bessel polynomial-type solutions for periodic BHE (PBHE)

Without loss of generality, we may assume that K4 = −1 for convenience of later
calculation. That is, we consider the following equation

Theorem 6.1. Let K3, K2, K1 and K0 be complex numbers. Then the equation

(6.1) f ′′ +
(

−e4z +K3 e
3z +K2 e

2z +K1 e
z +K0

)

f = 0,

admits an entire solution with λ(f) < +∞ if there exists an non-negative integer n
such that the following equation

(6.2)
K2

3

4
+K2 ± 2

√

−K0 = 2(n+ 1),

holds amongst the K3, K2 and K0. Moreover, when (6.2) holds, then there are

(1) n+ 11 , possibly repeated, choices, of K1

(2) precisely n+ 1 distinct real roots if, in addition that when K3, K2, K0 < 0
are real and

(6.3) 1± 2
√

−K0 > 02

hold

which consist of the roots of the determinant Dn+1(K1) = 0 where Dn+1(K1) equals
to
(6.4)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k1 −1
−(1 + 2

√
−K0)k2 k1 −K3 −1

−2(2 + 2
√

−K0)

×(k2 − 2)
k1 − 2K3 −1

. . .
. . .

. . .

. . .
. . .

. . .

− (n− 1)(n− 1 + 2
√

−K0)

× (k2 − 2(n− 2))
k1 − (n− 1)K3 −1

− n(n+ 2
√

−K0)

× (k2 − 2(n− 1))
k1 − nK3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

and the k1, k2 are given by

k1 =
1

2

(

−2K1 −K3(1 + 2
√

−K0)
)

,(6.5)

k2 = K2 +
K2

3

4
− 2− 2

√

−K0.(6.6)

1The n+ 1 roots come from choosing the “+” sign from (6.2).
2Same as the last footnote.
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Moreover, we have

BHn, ν(z) = f(z) = Pn, ν

(

2
√

−K0, −K3, 2(n− 1 +
√

−K0), −2K1; e
z
)

· exp
[

− K3

2
ez − 1

2
e2z +

√

−K0 z
]

= Yn, ν(e
−z) exp

[

− K3

2
ez − 1

2
e2z + (n+

√

−K0) z
]

(6.7)

where Pn, ν are the orthogonal polynomials mentioned in (1.2) and their reversed
forms, namely Ynν(x) = xn Pn, ν(α, β; 1/x) are the Bessel orthogonal polynomials
of BHE class, with respect to the complex weight defined in Theorem 4.1.

Proof. Suppose that the equation (6.1) admits a solution f with λ(f) < +∞. Then
according to [6, Thm. 1] (see also [14, Prop. 1]) that the f must assume the form
(2.4) where h = 1 and ℓ = 4 in (2.3) is even. Moreover, s = 0 ([14, Prop. 1]).
The transformations x = ez and Ψ(x) = f(z) transform the (6.1) into a generalised
Bessel equation (3.7)

(6.8) x2Ψ′′(x) + xΨ′(x) +
(

K4x
4 +K3x

3 +K2x
2 +K1x+K0

)

Ψ(x) = 0,

when ℓ = 4 in (3.7). On the other hand, the transformation (3.8) transforms the
(6.8) into BHE (1.1) via the identifications

(6.9)
K4 = −1; K3 = −β, K2 = γ − β2

4
,

K1 = − δ
2
, K0 = −α

2

4
.

between the two sets of parameters of the two equations respectively.

We next show that the function defined by (6.7) satisfies λ(f) < +∞ indeed. We
recall from the infinite series solution (3.12) of the BHE with the coefficients Ak

defined by the three-term recursion (3.13) terminates if and only if the condition
(3.15) is met. That is, if and only if

K2
3

4
+K2 ± 2

√

−K0 = 2(n+ 1),

and An+1 = 0 hold in view of (6.9). However, the condition that An+1 = 0 can be
written as the determinant Dn+1(K1) = 0 of order n+1. In fact, it is a polynomial
equation in the variable K1 of degree n+1, as asserted in (6.4). It remains to derive
the solution (6.7). But this follows from the transformation (3.8) that the equation
(6.8) also has a polynomial solution. In fact, one can compute the coefficient d
and the coefficients of the polynomial P (z) from (2.4) by substituting the (2.4) into
(6.8). Finally, the transformation (3.9) and Yn ν(x) = xn Pn, ν(α, β; 1/x) confirm
that the (6.7) has λ(f) < +∞.

We note that if the K3, K2, K0 are arbitrary complex constants that satisfy the
(6.2), then the K1 could be a repeated root for the Dn+1(K1) = 0 in case (1). If,
however, we have assumed that the K3, K2, K0 < 0 are real and (6.3) holds, then
(6.9) implies that 1 + α = 1 ± 2

√
K0 > 0. We deduce from Rovder’s result [44] on

BHE that the corresponding polynomial solution has distinct real roots. That is,
the determinant (6.4) has n+ 1 distinct real roots for K1. �
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Remark 6.2. We observe from part (2) of Theorem 6.1 that for each integer n
where the relation (6.2) holds, there are n + 1 choices of K1 where the equation
(6.1) admits a solution of form (6.7), so when we describe such generalized type
eigen-solutions, that we may write

(6.10) f ′′ +
(

−e4z +K3 e
3z +K2 e

2z +
(

K1

)

n, ν
ez +K0

)

f = 0, 0 ≤ ν ≤ n,

for each integer n.

7. Fredholm integral equations with symmetric periodic kernels

It has been conjectured that Heun’s and its confluent equations, including BHE
of course, have no general integral representations of its solution in terms of simpler
integrands in terms of 2 F1 or its confluent forms (see also [45]). Instead, it is ob-
served that there are new structures of having homogeneous Fredholm-type integral
equations (or integral equation of second kind) of the form

(7.1) u(x) = λ

∫ b

a

K(x, t)u(t) dt,

where λ is the eigenvalue of the solution u(x), and the kernel K(x, t) is symmetric
in x and t, if any. Such integral equations are of fundamental importance for
Heun equations (see, for example, [45, Part A]), which play the role of integral
representations for hypergeometric equation.

It has long been known that Laplace’s and analogous transforms method can
solve some linear differential equations by definite integrals. The method involves
first to write the differential equation in its adjoint form and use it to construct an
auxiliary partial differential equation which is then solved by the method of separa-
tion of variables. See for examples, Forsyth [27, p. 252] and Ince [36, XVIII]. The
methods differ from Green’s function consideration where the kernel of the integrals
involved usually have discontinuities along the “diagonal”, while the Laplace-type
integral transform method produces “continuous” kernels. Our principal concern
here is to obtain such an explicit Fredholm-type integral equation and solutions
for the periodic BHE (1.3), using the Laplace’s (integration-by-parts) method. Of
course, one should also investigate the existence and uniqueness problems of the
(7.1), see for example [49], but the existing theories do not seem to be applicable
for the BHE or the periodic BHE. On the other hand, there are non-linear integral
equations and relations exist for the Heun equation, as described in [45], that are
not treated here for the periodic BHE.

Whittaker applied the above methodology to produce Fredholm integral equa-
tions of the second kind. We have already mentioned that he found the integral
equation (1.6) for the Lamé equation (1.4) in the §1. It turns out that another
such integral equation that he derived for the Mathieu equation is closer in spirit to
the Fredholm integral equation of the second kind for PBHE that we have derived
below. Let us review Whittaker’s result of 1912 [55]. Whittaker showed that one
can write eigen-function solution to the Mathieu equation

(7.2) f ′′(z) + (a+ k2 cos2 z)f(z) = 0
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to satisfy the homogeneous form of Fredholm integral equation of the second kind
[49]

(7.3) f(z) = λ

∫ 2π

0

ek cos z cos s f(s) ds,

where there is an increasing sequence of eigenvalues λ1 < λ2 < λ3 < · · · and their
corresponding eigen-functions y1, y2, y3, · · · . An example, is given by Whittaker
[55] for the zeroth even Mathieu functions:

(7.4) ce0(z) = λ

∫ 2π

0

ek cos z cos s ce0(s) ds,

where λ =
ce0(π/2)

2π
, and

ce0(z) = 1 +
k2

8
cos 2z +

k4

29
cos 4z + · · · .

The corresponding Fredholm integral equation we have found for the PBHE is
given in the following result where we have assumed that all the coefficients in (6.1)
are real.

Theorem 7.1. Let K3, K2 and K0 < 0 be real and that

(7.5) 1± 2
√

−K0 > 0.

For each non-negative integer n, there are n+1 distinct pairs of generalized eigen-
values

(

(K1)n, ν , λn, ν
)

, 0 ≤ ν ≤ n such that the Fredholm integral equation of the
second kind

(7.6) f(z) = λ

∫ 2π

0

e
i
2
(e2iz+e2is)−K1(e

iz+eis) f(s) ds

admitting corresponding eigen-solutions
(7.7)

BHn, ν(iz) = Yn, ν(e
−iz) exp

(

−(K1)n, ν e
iz−1

2
e2iz+(n+

√

−K0) iz
)

,

{

n = 0, 1, 2, 3, · · ·
ν = 0, 1, · · · , n

where (n+
√
−K0+1)2 = 1 and the Yn, ν(ζ) is defined in (6.7) and (K1)n, ν satisfies

the determinant

det
(

(K1)n, ν
)

= 0

given in (6.4).

Remark 7.2. (1) We first note that we will actually prove below that the eigen-
solutions (7.7) for (7.7) are actually eigen-solutions (7.7) to (10.8).

(2) There are two choices of the values of n+
√
−K0, namely 0 or −2 in (7.7)

above.
(3) We further note that the kernel function under the integral sign of our

result is closer in spirit to that of the Mathieu equation in (7.3) then that
of the Lamé integral equation. We also note that the result differs from the
eigen-values problem from the Mathieu equation described above where a
single increasing sequence of eigenvalues were found.
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(4) Finally, we remark although the eigen-value pairs
(

(K1)n, ν , λn, ν
)

, 0 ≤ ν ≤ n are distinct, we only know the
(

(K1)n, ν
)

, 0 ≤
ν ≤ n are distinct but we have no result for the corresponding λ’s at this
moment.

Proof. Without loss of generality, we may consider for each integer n ∈ N, and
ν = 0, 1, · · · , n, the coefficients K3, K2, K0 satisfy the relation (6.2), then there
are n + 1 of K1 = (K1)n, ν that are roots to the determinant Dn+1(K1) = 0 from
(6.4), the equation

(7.8) f̃ ′′(z) +
(

K̃4 e
4iz + K̃3 e

3iz + K̃2 e
2iz + K̃1 e

iz + K̃0

)

f̃(z) = 0,

f̃(z) = f(iz), where

(7.9) K̃j = −Kj, j = 0 ≤ j ≤ 4,

K1 = (K1)n, ν and in particular K̃4 = 1.

Suppose (7.8) admits an “eigen-solution” u(z). Then we define a sequence of
second order partial differential operators

(7.10) Lz :=
∂2

∂z2
+ ℓ(z),

where Lz = (Ln, ν)z and

(7.11) ℓ(z) := (ℓn, ν)(z) =K̃4 e
4iz + K̃3 e

3iz + K̃2 e
2iz + K̃1 e

iz.

Let K(z, s) be a function with two complex variables. Then we construct a partial
differential equation for which K(z, s) solves:

(7.12) Lz(K)− Ls(K) =
∂2K

∂z2
− ∂2K

∂s2
+ [ℓ(z)− ℓ(s)]K.

Now let

(7.13) K(z, s) = exp
[

a (e2iz + e2is) + c (eiz + eis)
]

,

with the constants a, c remain to be chosen.

Substituting (7.13) into the (7.12) yields

Lz(K)− Ls(K) = Kzz −Kss +
[

ℓ(z)− ℓ(s)
]

·K
and which vanishes identically if we set

(7.14) 4a2 = K̃4 = 1, 4ac = K̃3, 4a+ c2 = K̃2, c = K̃1.

It follows that

(7.15) K3 = 4aK1.

On the other hand, we know from [21, p. 62] that the transformation

(7.16) ũ(z) = z−
α
2 e

β

2
z+ 1

2
z2

Ψ̃(z)

transforms the BHE (1.1) into the equation

(7.17) x2Ψ̃′′(x) + xΨ̃′(x) +
(

K̃4x
4 + K̃3x

3 + K̃2x
2 + K̃1x+ K̃0

)

Ψ̃(x) = 0,
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which is a special case of (3.7) when ℓ = 4, and with the identifications

(7.18)
K̃4 = 1; K̃3 = β, K̃2 = −

(

γ − β2

4

)

,

K̃1 =
δ

2
, K̃0 =

α2

4
.

between the two sets of parameters of the two equations (please also refer to (7.9)
and (6.9)).

Let us first consider the following unconventional periodic boundary value prob-
lem of

(7.19)
((Ln, ν)x + (K̃0)n) ũn, ν = 0, on 0 ≤ x ≤ 2π,

ũn, ν(0) = ũn, ν(2π), and ũ′n, ν(0) = ũ′n, ν(2π)

where 0 ≤ ν ≤ n and n ∈ N.

We now apply the so-called classical Lagrange adjoint equation method which
is quite effective to find integral transforms or integral equations formulae as for-
mulated in Forsyth [27, pp. 251–253]. The current variation is inspired from the
papers by Whittaker [55] and [57] and Ince [35] as well as the approximate square-
root method in [4] and [14].

We note that it is clear that the kernel K constructed above depends on n and
ν which we de-emphasis and its partial derivative in x (or its partial derivative in
s) are equal at the periodic boundary points:

(7.20) K(x, x1) = K(x, x2) and Kx(x, x1) = Kx(x, x2).

So let ũn, ν be the (n, ν)-th eigen-solution to (7.8) with (K̃0)n, ν for an arbitrary
n = 1, 2, 3, · · · ; 0 ≤ ν ≤ n. We also let

(7.21) I(x) :=

∫ 2π

0

K(x, s) ũn, ν(s) ds.

Applying the operator Lx onto I(x) yields

Lx[I(x)] =

∫ 2π

0

Lx[K(x, s)] ũn, ν(s) ds

=

∫ 2π

0

Ls[K(x, s)] ũn, ν(s) ds

=
[

C(x, s)
]2π

0
+

∫ 2π

0

K(x, s)Ls[ũn, ν(s)] ds

=
[

C(x, s)
]2π

0
− (K̃0)n, ν I(x),(7.22)

where C is the bilinear concomitant in the form

(7.23) C(x, s) := ũn, ν(s)Ks(x, s)− ũ′n, ν(s)K(x, s).

In order to exhibit that the (7.21) is an eigen-solution to (7.19), we need to show
that the concomitant (7.22) vanishes for x at both the end points 0, 2π. This follows
because of the fact that the K satisfies the periodic boundary values assumption
(7.20) stated in (7.19). It remains to verify that this assumption does indeed hold
for ũn, ν(s) for each n = 1, 2, 3, · · · ; 0 ≤ ν ≤ n. . To do so, let us first recall from
the Theorem 6.1 that the periodic BHE (6.1) admits an eigen-solution (6.7) when
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(6.2) and equivalently (3.15) hold. In particular, we deduce from (7.14) and (6.9)
that

2n = γ − α− 2 = −K̃2 +
K̃2

3

4
− 2

√

K̃0 − 2

= −(4a+ c2) +
16 a2c2

4
− 2

√

K̃0 − 2

= −(4a+ c2) + 4a2c2 − 2

√

K̃0 − 2

= −4a− 2

√

K̃0 − 2

and 4a2 = −K̃4 = 1 hold, implying that
√

K̃0 = −2a− 1− n

= ±1− 1− n

is an integer. Thus in order for the periodic BHE (7.8) to admit the corresponding

eigen-solution ũn, ν(z) := f̃n(z) = fn(iz) that meets the periodicity assumption
(7.23) that C(0, s) = C(2π, s), it is sufficient to show that both ũn, ν and ũ′n, ν
are periodic of period 2π so that the (7.23) is periodic with the same period. But

this now follows from the (n +
√
−K0 + 1)2 = (n +

√

K̃0 + 1)2 = 1. That is, we
deduce that n+

√
−K0 equals either 0 or −2, that is , it equals an integer and its

appearance in (6.7) implies that the (6.7) is indeed periodic. The above proves that

I(x) is indeed a solution to the BVP (7.19). We also note that the K̃0 = (n+1±1)2

is given by a monotone sequence of eigenvalues. Finally it follows from the equation
(7.15) that the eigen-solution (6.7) assume the form (7.7) where det((K1)n, ν) = 0
holds. �

Remark 7.3. The unusual appearance of eigen-values pairs
(

(K1)k, ν , λk, ν
)

,
0 ≤ ν ≤ k given in the Theorem 7.1 appears to be a result of the BHE/PBHE
possess not just one parameter but several related parameters (i.e., α, β, γ, δ) in
the differential equations that plays the role of single spectral parameter in their
respective eigenvalues problems in the classical equations, such as the Hermite
and Laguerre equations. Acscott [3], Sleeman and his co-workers have developed
a multiparameter spectral theory and applied it to Lamé equation and ellipsoidal
wave equation. In particular, they have related the spectral problems for differential
equations to their respective integral equations. See, e.g. [48] and [12]. However, it
is not clear if their theories could apply to the BHE/PBHE as we have formulated
in the current paper.

8. Single and double orthogonality properties

It is known that the classical Lamé polynomials [3, §9.2–9.3], which are regarded
as eigen-solutions to the Lamé equation

(8.1) w′′(z) + [h− n(n+ 1) k2sn2z]w(z) = 0,
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where n is a chosen non-negative integer, then there are precisely n + 1 Lamé
polynomials that satisfies orthogonality relation [3, §9.4]

(8.2)

∫ 2K

−2K

Em1

n (z)Em2

n (z) dz = 0

whenever m1 6= m2(0 ≤ m1, m2 ≤ n), where the real and imaginary periods of sn z
are denoted by 4K and 2iK ′ respectively.

We show that the PBHE (1.3) with solutions that have polynomial component
(7.7) also exhibit an orthogonality relation that is different from the one given in
(4.4).

Theorem 8.1. Let n be a non-negative integer. Suppose the coefficients K3, K2

and K0 of the PBHE

(8.3) f ′′ +
(

−e4z +K3 e
3z +K2 e

2z +
(

K1

)

n, ν
ez +K0

)

f = 0, 0 ≤ ν ≤ n,

satisfy the relation (6.2) for each n. Then

(1) there are n+ 1, possibly repeated, choices of
(

K1

)

n, ν
, (0 ≤ ν ≤ n)

(2) and if in addition that K3, K2 and K0 < 0 are real and 1± 2
√
−K0 > 0 ,

then there are exactly n+ 1 distinct real values of
(

K1

)

n, ν
, (0 ≤ ν ≤ n)

such that the corresponding solutions BHn, ν , (0 ≤ ν ≤ n) to (8.3) given in (6.7)
satisfy the orthogonality relation

(8.4)

∫ 2πi

0

BHn, µ(z) · BHn, ν(z) e
z dz = 0

whenever µ 6= ν.

Proof. Apart from some minor variation specifically for the periodic BHE, the ar-
gument follows from a conventional approach of proving orthogonality. Given a
non-negative integer n, then once the coefficients K3, K2 and K0 are determined
as stated, then we immediately determine the n+1 distinct real values of

(

K1

)

n, ν

from the determinant (6.4). Let us consider

f ′′

n,µ(z) +
(

−e4z +K3 e
3z +K2 e

2z +
(

K1

)

n, µ
ez +K0

)

fn,µ(z) = 0

f ′′

n, ν(z) +
(

−e4z +K3 e
3z +K2 e

2z +
(

K1

)

n, ν
ez +K0

)

fn, ν(z) = 0
(8.5)

Subtracting the two equations resulting from multiplying the first one by fn, ν
and the second one by fn, µ respectively and integrating the resulting equation from
0 to 2πi yields

∫ 2πi

0

[

fn, ν(z)f
′′

n,µ(z)− fn, ν(z)f
′′

n, µ(z)
]

dz

+
[(

K1

)

n, µ
−
(

K1

)

n, ν

]

∫ 2πi

0

fn, ν (z)fn,µ(z) e
z dz = 0.

(8.6)
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Since the fn, ν(z), fn, µ(z) and their first derivatives are periodic of period 2πi, so
integration-by-parts yields

∫ 2πi

0

fn, ν(z)fn, µ(z) e
z dz

=
[(

K1

)

n, µ
−
(

K1

)

n, ν

]−1
∫ 2πi

0

[

fn, ν(z)f
′′

n, µ(z)− fn, ν(z)f
′′

n, µ(z)
]

dz

=
[(

K1

)

n, µ
−
(

K1

)

n, ν

]−1[
fn, ν(z)f

′

n,µ(z)− fn, ν(z) f
′

n,µ(z)
]2πi

0

= 0

�

Although the above theorem proves orthogonality for the exponential-type Hau-
tot polynomials without restricting the coefficients {K3, K2, K1, K0} are real, these
polynomials will only be really orthogonal when these coefficients are real. For if
all the {K3, K2, K0 < 0} are real and 1 + ±

√
−K0 > 0, then the Theorem 6.1

asserts that there are n + 1 of (K1)n, ν so obtained will also be real and distinct.
That is, there are precisely n+1 exponential-type Hautot polynomials solutions to
the PBHE. Besides, a careful examination on the equations in (6.9) indicates that
all the corresponding coefficients {α, β, γ, δ} are also real. As a result, we deduce
from the three-term recursion (3.13) that all the coefficients of the (exponential-
type) Hautot polynomials are real. Thus, when ν = µ, we have

(8.7)

∫ 2πi

0

(

BHn, ν(z)
)2
ez dz 6= 0.

Thus, we have established that under the above assumption on the reality of the co-
efficients on Kj , the exponential-type Hautot polynomials of degree n, {BHn, ν}nν=0

are orthogonal with respect to the the complex weight ez over [0, 2πi].

We further observe that one can define the inner product by integrating the
Lamé polynomials over a complex period [K − 2iK ′, K + 2iK ′] instead of the real
period [−2K, 2K] [3, §9.4] considered above. That is,

(8.8)

∫ K+2iK′

K−2iK′

Em1

n (z)Em2

n (z) dz = 0

whenever m1 6= m2. It is not difficult to see that analogue situation also holds for
the exponential-type Hautot polynomials:

(8.9)

∫ π+2πi

π

BHn, µ(z)BHn, ν(z) e
z dz = 0

whenever µ 6= ν.

We observe from (8.2) and (8.4) that although the corresponding Lamé polyno-
mial solutions and periodic BHE polynomial solutions of same degree respectively
are orthogonal with respect to the parameters µ, ν, it is not clear if polynomials
of different degrees are orthogonal to each other. It turns out that an orthogonal-
ity exists for polynomials of different degrees when they are formed from product
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of two Lamé polynomials of same degree but in different variables. The following
double orthogonality can be found in [3, §9.4]:

(8.10)

∫ 2K

−2K

∫ K+2iK′

K−2iK′

Eµ
m(z)Eµ

m(s)Eν
n(z)E

ν
n(s) (sn

2z − sn 2s) dz ds = 0

whenever n 6= m, while if m = n, then the orthogonality still hold when µ 6= ν, for

0 ≤ µ, ν ≤ n. We show below that a corresponding double orthogonality can be
extended to PBHE:

Theorem 8.2. Let K3 and K2 be given real numbers. Let m and n be non-negative
integers such that (K0)n < 0 and (K0)m < 0 satisfy

(8.11)
K2

3

4
+K2 ± 2

√

−(K0)n = 2(n+ 1), 1± 2
√

−(K0)n > 0

and

(8.12)
K2

3

4
+K2 ± 2

√

−(K0)m = 2(m+ 1), 1± 2
√

−(K0)m > 0

respectively. Suppose BHn, µ (0 ≤ µ ≤ n) are solutions of the differential equation
(8.3) as defined in the Theorem 8.1, and BHm, ν (0 ≤ ν ≤ m) are the corresponding
solutions to the equation (8.3) with n replaced by m. Then we have

(8.13)

∫ 2πi

0

∫ π+2πi

π

BHn, µ(z)BHn, µ(s)BHm, ν(z)BHm, ν(s) (e
z − es) dz ds = 0

whenever (n, µ) 6= (m, ν).

Proof. The idea is along the classical treatment by constructing a suitable pair of
partial differential equations and applying integration-by-parts. Let

Fn, µ(z, s) := fn,µ(z)fn, µ(s), Fm, ν(z, s) := fm, ν(z)fm, ν(s)

be functions of two variables (z, s). Clearly they satisfy the following partial dif-
ferential equations

∂2Fn, µ

∂z2
− ∂2Fn, µ

∂s2
=
[

− (e4z − e4s) +K3 (e
3z − e3s)

+K2 (e
2z − e2s) +

(

K1

)

n, µ
(ez − es)

]

Fn, µ = 0(8.14)

∂2Fm, ν

∂z2
− ∂2Fm, ν

∂s2
=
[

− (e4z − e4s) +K3 (e
3z − e3s)

+K2 (e
2z − e2s) +

(

K1

)

m, ν
(ez − es)

]

Fm, ν = 0(8.15)

Subtracting the equations (8.14) after multiplying by Fm, ν and the equation
(8.15) after multiplying by Fn, µ and integrating the two variables from 0 to 2πi
and π to π + 2πi respectively results in
∫ 2πi

0

∫ π+2πi

π

{

Fm, ν

[

(Fn, µ

)

zz
− (Fn, µ)ss

]

− Fn, µ

[

(Fm, ν

)

zz
− (Fm, ν)ss

]

}

dz ds

+
[

(K1)n, µ − (K1)m, ν

]

∫ 2πi

0

∫ π+2πi

π

Fn, µ(z, s)Fm, ν(z, s) (e
z − es) dz ds = 0.
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Integration of the above equation by parts and using the fact that both the Fn, µ,
Fm, ν and their partial derivatives are periodic with respective to both the variables
(z, s) yields

0 =

∫ 2πi

0

∫ π+2πi

π

[

Fm, ν (Fn, µ

)

zz
− Fn, µ (Fm, ν)zz

]

+
[

Fn, µ (Fm, ν)ss − Fm, ν (Fn, µ

)

ss

]

dz ds

+
[

(K1)n, ν − (K1)m,µ

]

∫ 2πi

0

∫ π+2πi

π

Fn, µ(z, s)Fm, ν(z, s) (e
z − es) dz ds

=

∫ 2πi

0

[

Fm, ν (Fn, µ

)

z
− Fn, µ (Fm, ν)z

]
∣

∣

π+2πi

π
ds

−
∫ 2πi

0

∫ π+2πi

π

(Fm, ν)z (Fn, µ)z − (Fn, µ)z (Fm, ν)z dz ds

+

∫ π+2πi

π

[

Fn, µ (Fm, ν)s − Fm, ν (Fn, µ)s
]∣

∣

2πi

0
dz

−
∫ 2πi

0

∫ π+2πi

π

(Fm, ν)s (Fn, µ)s − (Fn, µ)s (Fm, ν)s dz ds

+
[

(K1)n, ν − (K1)m,µ

]

∫ 2πi

0

∫ π+2πi

π

Fn, µ(z, s)Fm, ν(z, s) (e
z − es) dz ds

=

∫ 2πi

0

[

Fm, ν (Fn, µ

)

z
− Fn, µ (Fm, ν)z

]∣

∣

π+2πi

π
ds− 0

+

∫ π+2πi

π

[

Fn, µ (Fm, ν)s − Fm, ν (Fn, µ)s
]∣

∣

2πi

0
dz − 0

+
[

(K1)n, ν − (K1)m,µ

]

∫ 2πi

0

∫ π+2πi

π

Fn, µ(z, s)Fm, ν(z, s) (e
z − es) dz ds

(8.16)

where the second and the fourth double integrals are obviously zero. In fact, both
of the two remaining two single integrals in the last equal sign are also zero since
the Fn, µ, Fm, ν and their partial derivatives are periodic. That is, we have shown
that

[

(K1)n, ν − (K1)m, µ

]

∫ 2πi

0

∫ π+2πi

π

Fn, µ(z, s)Fm, ν(z, s) (e
z − es) dz ds = 0.

This proves the (10.12) holds whenever n 6= m and irrespective to the choices
of ν and µ. If, however, m = n in (10.12), then we may apply the known single
orthogonality relation (8.4) in the above argument to show that (10.12) again holds
whenever ν 6= µ. We omit the straightforward argument. �

We see that if n = m and ν = µ, then we have
∫ 2πi

0

∫ π+2πi

π

Fn, µ(z, s)Fm, ν(z, s) (e
z − es) dz ds

=

∫ 2πi

0

∫ 2πi

0

[Fn, µ(z, π + s)]2 (ez − eπ · es) dz ds 6= 0
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so that the products {BHn,µ(z)BHn, µ(s)} forms an orthogonal system.

9. Quasi-exact solvability

Lie group methods have helped in computing the spectrums of the Hermite and
Laguerre equations which are, respectively, the governing equations for harmonic
oscillator and hydrogen atom which are two most important quantum mechanical
models at the beginning of quantum mechanics. Turbiner [51] and his co-workers
[29], [26], etc. have apply Lie algebraic and Lie group methods to study the so-called
quasi-exactly solvable quantum mechanics problems. We shall show below that a
prime example of quasi-exact solvable equation is a BHE and hence the earlier
results that were deduced from complex oscillation theory become applicable.

Turbiner applied finite group representation of the group SL(C) to generate the
so-called quasi-exactly solvable quantum mechanics problems. As a result a few
Schrödinger equations for which a finite number of eigenvalues and eigenfunctions
can be solved explicitly are produced in [51] and [52]. See also [29], [26] and [30].

We propose to consider the following Schrödinger equation

(9.1) Hcψ = Eψ,

where

(9.2) Hc = − d2

dx2
+

(4s− 1)(4s− 3)

4x2
− (4s+ 4J − 2)x2 − cx4 + x6.

which includes the Bender-Dunne equation as a special case when c = 0, and which
can be transformed to the general BHE (1.1) via two transformations. We first
obtain

x g′′(x) + (−2x4 − cx2 + 4s− 1) g′(x)

+
(

(−3 +
c2

4
+ 4J)x3 + (E − 2cs)x

)

g(x) = 0,
(9.3)

from (9.2) via the transformation

(9.4) ψ(x) = e−
1

4
x4

−
c
4
x2

x2s−1 g(x).

We then obtain from the equation (9.3) the general BHE with the following coeffi-
cients

z u′′(z) +
(

2s−
√
2

2
c z − 2 z2

)

u′(z)

+
(

√
2

4
E −

√
2

2
c+

c2

8
+ (2J − 2)z

)

u(z) = 0,

(9.5)

via the transformation

(9.6) z =
x2√
2
, u(z) = g(x).

That is, the (9.5) is (1.1) with

(9.7)
α = 2s− 1, β =

√
2

2
c,

γ = 2J + 2s− 1, δ = −
√
2

2
E − c2

4
.
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The coefficients of a series solution (3.12) of the BHE (1.1) given by Maroni in
[20, p. 163] or [45, §(3.1.1)] satisfies the three-term recursion (3.13) which now
assumes the form

N
(

2s− 1,

√
2c

2
, 2J + 2s− 1,

√
2

2
E − c2

4
;
x2√
2

)

=

∞
∑

k=0

Ak

(1 + α)k k!
xk,

(9.8)

where the coefficients Ak, k ≥ 0 satisfy the three-term recursion formula (3.13)
with the four parameters chosen from (9.7) :

Ak =
[

(k − 1)

√
2

2
c+

√
2

2
s c− c2

8
−

√
2

4
E
]

Ak−1

− (k + 1)(k − 2 + 2s)(2J + 2− 2k)Ak−2, k ≥ 2(9.9)

where

(9.10) A0 = 1, A1 = 2J − 2.

Substituting

(9.11) Ak =
(

−
√
2

4

)k

P c
k (E)

into (9.9) yields

P c
k (E) =

[

E −
(

2c(k − 1) + 2cs− c2

2
√
2

)]

P c
k−1(E)

− 16(k − 1)(k − 2 + 2s)(J + 1− k)P c
k−2(E)

(9.12)

where the initial condition is

(9.13) P c
0 (E) = 1, P c

1 (E) = E −
(

2cs− c2

2
√
2

)

and which degenerates into (1.10) when c = 0. That is, we have

(9.14) ψ(x) = e−
x4

4
−

c
4
x2

x2s−1/2
∞
∑

k=0

(

− 1

4

)k P c
k (E)

k! Γ(n+ 2s)
x2k.

It also follows from general theory of orthogonal polynomials that the {P c
k (E)}

is a finite family of orthogonal polynomials whenever J +1 ≤ k. This follows from
Favard’s theorem [18, p. 21]. We see immediately that the above Bender-Dunne
polynomials are special cases of polynomials solutions to the general BHE due to
Hautot [33] by choosing c = 0.

Moreover, when J is chosen as a positive integer and the case when c = 0 above
in (1.12), the {P c

k (E)} exhibits a similar factorization property as indicated by
Bender and Dunne (1.12) when c = 0:

(9.15) P c
n+J(E) = P c

J(E)Qc
n(E), n ≥ 0.

The first few P c
J are given below when J = 3,



26 YIK-MAN CHIANG AND GUO-FU YU

P c
0 (E) = 1,

(9.16)

P c
1 (E) = E − 2cs+

√
2

4
c2,

(9.17)

P c
2 (E) = E2 +

(

√
2

2
c2 − 2c− 4cs

)

E

+ 4c2s2 + (−
√
2c3 + 4c2 − 64)s+

1

8
c4 −

√
2

2
c3,

(9.18)

P c
3 (E) = E3 +

(3
√
2

4
c2 − 6c− 6cs

)

E2

(9.19)

+
(

8c2 +
3

8
c4 − 128s− 3

√
2c3s− 32 + 24c2s+ 12c2s2 − 3

√
2c3
)

E

− 8c3s3 + (256c− 24c3 + 3
√
2c4)s2 +

(

320c− 32
√
2c2 − 16c3 + 6

√
2c4 − 3

4
c5
)

s

− 8
√
2c2 + 2

√
2c4 − 3

4
c5 +

√
2

32
c6,

P c
4 (E) =

[

E − 6c− 2cs+

√
2

4
c2
]

P3(E),

(9.20)

P c
5 (E) =

[

E2 +
(

− 4cs+

√
2

2
c2 − 14c

)

E

+ 4c2s2 + (28c2 + 128−
√
2c3)s+

1

8
c4 − 7

√
2

2
c3 + 48c2 + 192

]

P3(E),

(9.21)

from which we see that

P c
4 (E) = P c

3 (E)Qc
1(E), P c

5 (E) = P c
3 (E)Qc

2(E)

where

Qc
1(E) := E − 6c− 2cs+

√
2

4
c2,

and

Qc
2(E) := E2 +

(

− 4cs+

√
2

2
c2 − 14c

)

E

+ 4c2s2 + (28c2 + 128−
√
2c3)s+

1

8
c4 − 7

√
2

2
c3 + 48c2 + 192.

We deduce immediately that the above (9.15) and expressions for P c
4 (E) and P c

5 (E)
reduce to Bender and Dunne’s (1.12) and (1.11).

We note that Maroni has also discussed generating functions for the {P c
k (E)} in

[45, Part D, §5].
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10. Periodic Turbiner equation

Since the Turbiner equation is a special case of the BHE which we have written
it in a periodic form, so we shall rephrase some previous results for the equation in
periodic form below. The identification (6.9) and (9.7) allow to write the equation
(9.5) into the form

(10.1) f ′′ +
(

− e4z −
√
2

2
c e3z + (2s+2J +1) e2z +

√
2E

4
ez − (2s− 1)2

4

)

f(z) = 0

and it becomes

(10.2) f ′′ +
(

− e4z + (2s+ 2J + 1) e2z +

√
2E

4
ez − (2s− 1)2

4

)

f(z) = 0

when c = 0, that is, it is the periodic form of the equation (1.7). We assume all the
parameters c, s, J and E above are real values. We note that the requirement that
α + 1 > 0 in order apply Rovder’s result to conclude that there are J + 1 choices
of E in the theorems below. But this is automatically satisfied since

1 +±2
√

−K0 = 1 +±2

√

(2s− 1)2

4
= 2s > 0

provided that s > 0. We shall omit their proofs.

We deduce from the Theorem 1.7 that

Theorem 10.1. Let c, s > 0, and non-negative integer J be arbitrarily chosen.
Then there are J + 13 choices of E that satisfy the relation

(10.3) 4c2 + 2(2s+ 2J + 1)± (2s− 1) = 4(J + 1)

such that when (10.3) holds, then there are precisely J + 14 distinct choices of E
which consist of the roots of the determinant DJ+1(E) = 0 where DJ+1(E) is given
by
(10.4)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k1(E) −1

−2s k2 k1(E) +

√
2c

2
−1

−2(1 + 2s)(k2 − 2) k1(E) + 2 ·
√
2c

2
−1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
− (J − 1)(J + 2s− 2)

× (k2 − 2(J − 2))
k1(E) + (J − 1)

√
2c

2
−1

− J(J + 1 + 2s)

× (k2 − 2(J − 1))
k1(E) + J

√
2c

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

3The J + 1 solutions come from choosing the ”+” sign in (10.3)
4We have a further J + 1 solutions if choose the “−” sign in (10.3)
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and the k1, k2 are given by

k1(E) =

√
2

4

(

− E + 2s),(10.5)

k2 = 2J +
1

8
c2.(10.6)

Moreover, we have

BHJ, ν(z) = PJ, ν

(

2s− 1,

√
2

2
c, 2(J + s)− 3, −

√
2

2
E; ez

)

· exp
[

√
2c

4
ez − 1

2
e2z +

(2s− 1

2

)

z
]

= YJ, ν(e
−z) exp

[

√
2c

4
ez − 1

2
e2z +

(

J +
2s− 1

2

)

z
]

(10.7)

where Pn, ν are the orthogonal polynomials mentioned in (1.2) and their reversed
forms, namely YJ ν(x) = xJ PJ, ν(α, β; 1/x) are the Bessel orthogonal polynomials
of BHE class, with respect to the complex weight defined in Theorem 4.1.

Clearly a corresponding Fredholm integral equation of second type follows from
the Theorem 7.1 immediately:

Theorem 10.2. Let c, s > 0, and non-negative integer J be arbitrary chosen.
For each non-negative integer J , there are J + 15 pairs of generalized eigenvalues
(√

2(E)J, ν/4, λJ, ν
)

, 0 ≤ ν ≤ J such that the Fredholm integral equation of the
second kind

(10.8) f(z) = λ

∫ 2π

0

e
i
2
(e2iz+e2is)−

√
2E
4

(eiz+eis) f(s) ds

admitting corresponding eigen-solutions
(10.9)

BHJ, ν(iz) = YJ, ν(e
−iz) exp

(

√
2(E)J, ν

4
eiz−1

2
e2iz+

(

J+
2s− 1

2

)

iz
)

,

{

J = 0, 1, 2, 3, · · ·
ν = 0, 1, · · ·J,

where the Yn, ν(ζ) is defined in (6.7) and
√
2(E)J, ν/4 satisfies the determinant

det((E)J, ν) = 0 given in (10.4).

Likewise, the orthogonality relationships for the PBHE derived in the §8 have
their counterparts as stated below. We start with single orthogonality:

Theorem 10.3. Let c, s > 0, and non-negative integer J be arbitrarily chosen.
Then there are J +1 , distinct choices of E that satisfy the relation (10.3). The E
are the roots of the determinant DJ+1(E) = 0 (10.4), such that the corresponding
eigen-solutions to fJ, ν of the equation (10.1) satisfy the orthogonality relation

(10.10)

∫ 2πi

0

BHJ, µ(z)BHJ, ν(z) e
z dz = 0

whenever µ 6= ν, for 0 ≤ ν, µ ≤ J, J = 1, 2, 3, · · · .

5The J + 1 solutions come from choosing the ”+” sign in (10.3).
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Just as in the discussion in the §8, the orthogonality between two eigen-solutions
BHJ, µ(z)BHJ, ν(z) are indistinguishable with respect to a single measure and sin-
gle integral, we can distinguish orthogonality between the productsBHJ, µ(z)BHJ, µ(t)
and BHI, ν(z)BHI, ν(t) and with respect to a mixed weigh and double integral.

Theorem 10.4. Let c, s > 0, and non-negative integers J, I such that

4c2 + 2(2s+ 2J + 1)± (2s− 1) = 4(J + 1)

and

(10.11) 4c2 + 2(2s+ 2I + 1)± (2s− 1) = 4(I + 1)

hold. Then there are precisely J + 1 distinct choices of E1 and I + 1 choices of
E2 that satisfy, respectively, the determinants DJ(E1) = 0 given in (10.4) and the
corresponding DI(E2) = 0 (with the suitably defined k1 and k2 in (10.5)). Suppose
that BHJ, µ (0 ≤ µ ≤ J) and BHI, ν (0 ≤ ν ≤ I) are solutions to the differential
equation (10.1) and the same equation with J replaced by I respectively. Then we
have

(10.12)

∫ 2πi

0

∫ π+2πi

π

BHJ, µ(z)BHJ, µ(t)BHI, ν(z)BHI, ν(t) (e
z − et) dz dt = 0

whenever (I, µ) 6= (J, ν).

11. Periodic forms of Heun’s Equations

Periodic forms of the Heun equation and its confluent forms have been studied
long before their algebraic forms. Heun appears to be the first one to study the
equation name after him in 1889 [34]

(11.1)
d2y

dz2
+

(

c

z
+

d

z − 1
+

e

z − t

)

dy

dz
+

ab(z − t)− σ

z(z − 1)(z − t)
y = 0,

now known as the general Heun equation (GHE). However, the well-known Lamé
equation [59, chap. XXIII], [24, chap. XV] which is a special case of the GHE was
written down by Lamé in 1839, see [59, §23.1]. Moreover, Darboux [19] has wrote
down the equation name after him

d2y

dz2
=
(ν(ν + 1)

sn 2z
+
ν′(ν′ + 1)

cn 2z
dn 2z+

+
ν′′(ν′′ + 1)

dn 2z
k2 cn 2z + n(n+ 1)k2sn 2z + h

)

y.

in 1882 which is a periodic form of the (11.1) before Heun.

Similarly, Mathieu wrote down the Mathieu equation (7.2) in 1868, see [59, §19.1]
which is a special case of the Prolate spheroidal equation [47], [24, chap. XVI] or
called confluent Heun equation (CHE)

(11.2)
d2y

dz2
−
(

c

z(z − 1)
+

d

z − 1

)

dy

dz
+
σ − (t+ σ)z

z(z − 1)2
y = 0,

which has singularities {0, 1, ∞} at which the ∞ is an irregular singular point. It
results from the coalesces of t and ∞ in the Heun equation (11.1). One can also
find a periodic form equation for the CHE from [24, chap. XVI].
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A further coalesce of the singularity 1 and ∞ from the CHE results in the BHE
(1.1) which is the main focus of this article.
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n
+(az2+bz+c)P ′

n
+

(d+ ez + fz2)Pn = 0, Bull. Soc. Sci. Liége, 38 (1969), 660–663
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