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THE EXACT MOTION OF A CHARGED PARTICLE
IN THE MAGNETIC FIELD
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Synopsis

The relativistic equations of motion are completely solved for a special configuration
of the external magnetic field, a case which seems to have never been considered
before. It is also shown how the quaternionic formalism can replace the traditional
Lagrange formalism in that kind of problem. The characteristics of the movement are
briefly discussed 'in all possible cases.

1. The equations of motion of a charged particle in an electromagnetic
field are rarely exactly integrable!). We present here the complete solution
of the problem for the special magnetic field

—7y yx )
x2+y2’ x2 4 2
This case seems to be isolated. The same problem has been solved by us in
Dirac’s theory2).

Let us first remark that there is no difference between the classical
treatment or the relativistic one. Indeed when there is only a magnetic
field, the relativistic equations can be written

mofy + mop3(v-y/c?) v = ev X B, (1)
where

B=(1 — v2fer)t.
Multiplying by v, it follows that v-y = 0. Therefore

B~ (o2 + 591

2 = const. (2)
Eq. (1) then reduces to the newtonian form:
mofy = ev X B = my,

where m 1s the relativistic mass.
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We may therefore start with this last equation.

The use of cylindrical coordinates (r, @, z) is needed; the equations of
motion may be obtained through a Lagrange formalism or otherwise by
using the quaternionic formalism (for definitions related to quaternions see
for example ref. 3). The starting equation may be written

d2Rg £ dRg
= | Vec B 3
a2 P |: ect & S:I, ( )

where we have set

Ry=ix+ jy + kz =vrie*v 4+ kz,
. \ .Y o
B3 - 3Bx + }By —|-‘ sz = eékl{' }—2 + k_ e—!kﬁ'l
¥ ¥

Introducing these expressions into (3) we get

[d»  (dp\t] ./ Q% _dr dp d2z
L S I L . Bl L ~tko
‘ w{“[dtz y(dt)i|+}(r @ i dz)F dtz}e

£ . dr . dy dz LY o
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That quaternionic equation is equivalent to the following system:

dzr dg \2 £ de y dz
——milile—] = et e ——; (4)
di2 dé m df 2 dt
dr dg d2p e o dr
. B I 5
@ a7 ae y a’ ©)

Eq. (4) may be replaced by (2) ‘.e.

dr \2 o de\? dz\?
(5 () (5 -

Eqgs. (5) and (6) are immediately equivalent to conservation laws:

d "
dz ey 1
—_——— == — 9
= 3 a (= const.). (%)

Combining (7), (8) and (9) we reduce the solution of our problem to the
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following basic problems:

r

he 1t dut
) (Au? 4- Bu + CO)}’

Ta

- 4 [b — (eofm) 1] du
""_"”“__[ w(Au? + Bu + C)}’
[ Man — eyl du
T ) 4wt ¥ Bu + O)F

Fo

We have put for the sake of brevity:
A = (m2? — 202 — a?m?)[/m?2, B = 2me(ba + ay)/m?,
C = — (b2 + e2y3) 2,
B2 — 44C = (4/m4)[m2v2(e2y2 4 m2b2) — (abm? — e2ay)2].
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(13)

It may be noticed that B2 — 44C = 0. That is evident when A = 0 because

C is always negative. When 4 < 0 that is also true because

dr \2
Ay2 4 By 4 C = »? ('H{) > 0.

and this is possible if and only if the trinomial has two real roots r; and 73 so

that r1 < » < rs.

Before discussing the various cases depending upon the values 4 and C,

let us first point out the following equations. Setting

w du du
1w :_[ @eteiror J™ ZI"(A&Z_+ Bu+ C)t’

K(u) = du
) w(Au? + Bu + C)F’

we deduce

t = I(r) — I(ro),

z2—zp=al(r) — %— J(r) — al(ro) + %](ro),

@ = po=bK() — " J(r) — bK(ro) + -~ J(ro)-

(14)
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The following five possible cases are to be successively investigated

I-1: C=0 A =0,
[-2: C=0 A4 =>0;
I1-1: C <0 A =0:
I1-2: C<0 4 >0;
I1-3: C <0 A <.

In case [-2 4 < Ois impossible when C = 0 and will therefore never appear.

2. The solutions. 1-1: C =0, A = 0.

C = 0 implies b = y = 0 and therefore B = 0 i.e. dr/df = 0; we deduce
¥ = ro (= const.), 2 = zg - al and @ = po — (ea/mrg) L.

[-2: C=0, 4 >0.

dr/dt = AY implies » = rg + AY, z = 2y + at and

ea At ro + Ak
In .

¥o

¥ = o —

[I-1. C <0,4 =0.
The calculation of integrals I, J and K give on account of (14):

2C
i ’ L]
I(u) = 3B (Bu + C) B2 (Bu + C)*,

J) == (Bu + O,

K(u) = 2(—C)*arctg [Bz:i-ECT .

= 2 Brrop— X By 1
_3—82( r+C)f— B2 (Br + C)* — I(ry),

bod 2“ s
z—dgzﬁg(B?’#*C) —

2amC + 2B
— e (Br O} + L J(ro) — al(ro) (15)
B ¥

@ — @o = 2b(—C)} arctg[--- g JE‘C]

2ea o
— =2 (Br 4 O+ - J(ro) — bK (o).
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II-2: C<0,4>0.

I(u) = % (Au? + Bu + C)}

B
— A7 In [24}(Au? + Bu + C)} + 24u + B,

J(u) = A~41n|2A4% (Au? + Bu + C)! + 24Au + B,

Bu + 2C
K(u) = (—C)*aresin ——— " =~
(1) = (—C)*arcsin W(BE — 2AC)

- A}—(AerrBrJrC}é

B
=z A-11n|24%A»2 + Br + C)t + 247 + B| — I{rp),

2 (4r2 4 Br + Ot

2—Zp=

B} 2sp4
amB ¥ 2674 11244 (A7% + Br + C)} + 247 + B
2mAl

— al(ro) + -1 J(ro)

Br + 2C
p — o = b(—C)taresin ———————
@ — qo (—C)~*arcsin H(B? — 24C)1
ead?

In[24% (472 + Br + C)! + 24r + B|
£

— bK(r0) + — J(ra).
iy

II-3: C<0,4<0.

—_—

I (1) :-4-(A112—)—Bu+ C)t
B _: , 24u + B
— (—A)~taresin (Ez_—m'
., 24Au+ B
](“) = —(—A)_* arcsin —(}32 e W
Bu + 2C

K(u) = {—(:)_i arcsin -m.
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1

t:I(Arzﬁ—Br-}—C)*

B 24r + B

— — (—A)tarcsin m

5 — I(ro),

z—zg:—g-(Arg—{—Br—r—C)*

aBm -+ 2eyA . 24r + B ey
_ sl kil M =
am(—A)y SN g —gaey A0+ o)

o . 24r + B got
+ m arcsin m - bK(?’{]) -+ ? ](?’{)).

3. Study of the trajectories. Summary. From the analytical point of view
the problem is completely solved; a, b and v2 are related to the initial con-
ditions by eqs. (7), (8) and (9). Let us now review in a little more detail the
five cases and let us try to interpret the general characteristics of the move-
ment at least when it is not too complicated.

I-1. This case occurs when

dz \2
m2v? = £202 + m? (—) (z.e. A = 0).
0

The trajectory is a helix; its projection on the xy plane is a circle of radius rq.
The particle travels to infinity along the z axis with the constant velocity

a = (dz/d#)o.
I-2. This case occurs when
d :
b =, rn(—"’) -2  Gec=0),
di Jo m
and

2 \2
m202 > e2x? - mz(-- -) (i.e. A > 0),
0

The trajectory is a helical spiral; its projection on the xy plane is a spiral:

sad—t 7
In—,
m 7o

¢—qo=—
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or
mA?

&t

r=rp cxp[— (p — 93‘0)],
The coordinate » increases at a constant rate A% The velocity along the z
axis has the constant value a = (dz/dt)o.

[I-1. This case occurs when 9 and ro(dep/dé)o + ex/m are not simultane-
ously zero (i.e. C # 0)
and when

. |: dz ey T .
m2v? = 22 + m2| [ —) + (i.e. 4 = 0),
( d.‘f )(} ’m?’g]

The trajectory is very complicated. However, in the particular case, where
A = 0 it is possible to invert eq. (15) to obtain  as an explicit function of
time; if X = (Br 4+ C)' we have to solve the cubic equation

X8— 30X — JHE[E4 IO =0;

Because C is negative there is only one real root which gives X as a function
of time; finally we have
—1-332£ 1(rq)] gBa[t‘I 2 C:‘*§
r=g Ut i)]+ TR (r0)]2 —

4 SBzft I 9343 I(ro)]2 CSia :
s i (e (ro)] — Té_[ + I{ee) P — :|} + B

For large values of £ we have the asymptotic behaviour

1 (3B2\?
ra—(—).
B 2

IT1-2 and I1-3. These cases occur when y and ro(dep/dt)p + ex/m are not
simultaneously zero (i.e. C = 0)
and when
dz T
m2v2 = 252 L2 — | + 5 (case 11-2, 4 = 0),
0 mro
or

| v
M2 < e2x2 | ma[(ﬁ) ST ] (case I11-3, A < 0).
dt /o mro

In these general cases it is impossible to invert the expression giving £ as a
function of . However, it may be noted that in case 11-2

—B + (B2 — 44C)}
' 24

< 7 < 09,
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while in case I1-3 the range of allowed 7 values is bounded:
—B — (B2 — 44C)}F —B + (B%2 — 44C)}
. 24 T 24

from which we deduce that B is positive in this case because the roots must
be positive.

4. Conclusion. The problem is now completely solved. Given a set of
initial conditions it is always possible to determine which of the five possible
cases is at hand. It is then possible to write down the exact solution in terms
of elementary functions.

REFERENCES

1) Whittaker, E. T., A treatise on the analytical dynamics of particles, Cambridge
University press (Cambridge, 1960).

2) Hautot, A. P., Phys. Letters 35 A (1971) 129.

3) Hautot, A. P., Physica 48 (1970) 609.



