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Schrodinger's equation is exactly soluble if one considers a central potential of the type A»2+ Br- D/

provided D takes particular well chosen values,

Many authors are interested in the search for
all electric fields which allow a complete and
exact solution of Schrédinger's equation. Morse
and Feshbach [1] ha.ve listed convenient poten-
tials: A/r, A/r - B/»2 (4#0), A/r2 + Br2 (B#0).
Some potentials lead to soluble equations pro-
vided the angular momentum quantum number
1=0:V="V,exp(-r/d) or V =V, tanh(r/d).
These cases excepted, Plesset [2] has shown
that no exact solution in term of a finite number
of elementary functions can be found if the po-
tential is of the type V =24, }\krk with ar-
bitrary constant Aj. In particular no quantiza-
tion of energy exists.

Our purpose is to show for the special po-
tential V = A»2 + Br - D/r (A #0) that the prob-
lem is exactly soluble if D is correctly related
to A and B.

1) Spherical coordinates: r2 = x2 4 y2 4 22,
The radial part of Schridinger's equation is:
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Eq. (3) is of the type »o" + (ar2 +br +¢) @'
+ (d+er) @ = 0 (with ¢ = -2I negative integer).

We have studied it elsewhere [3]: the divergent
solution (at » = 0, see eq. (2)) of eq. (1) is easily
found as »7*~* times a linear combination of
Weber functions; of course we are mainly inter-
ested in the convergent quadratically integrable
solution so that ¢ = r2l+l polynomial of de-
gree n. Introducing that ¢ into (3) we easily de-
duce the two conditions to be fulfilled: e =
-(n+2l+1)a and the vanishing of a determinant
(more precisely a continuant [4]) of range n + 1
(thus n = 0). The detailed form of that continuant
is [5]:
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Tk = (k+1)(k-20).

The first condition gives the energy levels which
are found to be explicitly independent of D and
the second condition gives the allowed D values
for each value of ! and n:

nZ/m)(n+1+3) - B2/44.
2) Cylindrical coordinates: v2 = x2 + y2. The
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same theory holds I(I+1) being simply replaced
by p2 in eq. (1). It must be pointed out that

eq. (3) is also true in this case provided one
considers odd negative values of ¢ = (-2 +1) in
place of even values as in case 1.

Conclusion. Schrodinger's equation with po-
tential A72 + By - D/r is exactly soluble only for
special values of D in both spherical and cylin-
drical coordinates., Classically the same prob-
lem leads to elliptic integrals. Theories en-
countered in the general case may degenerate
into elementary integrations when D is well
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fitted leading to a stable periodic motion so that
both classical and quantum descriptions are
quite analogous.
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