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Abstract

A new series for the Madelung constant M is derived on the basis of a representation given by

R. Crandall (1999). We are able to write M = C + S, where S is a rapidly convergent series, and

the constant C is fundamental:

C = −1

8
− ln 2

4π
− 4π

3
+

1

2
√

2
+

Γ
(

1

8

)

Γ
(

3

8

)

π3/2
√

2
≈ −1.747564594 . . . .

The remarkable result is that even if the S term be discarded, this constant C gives 10 good

decimal places of M . This result advances the state of the art in the discovery of what Crandall

has termed “close calls” to an exact Madelung evaluation. We indicate related identities and how

this fundamental 10-digit accuracy might be further enhanced.
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I. INTRODUCTION

The Madelung constant has fascinated mathematicians and physicists alike over the past

century. It is physically related to the electrostatic interaction of a sodium ion with all other

ions in a perfect NaCl crystal. The Madelung constant, M , can be written as

M =
′
∑

m,n,p

(−1)m+n+p

√

m2 + n2 + p2
, (1.1)

where the sum over integers m, n and p runs from −∞ to +∞. A prime over the summation

sign indicates that the term corresponding to the zero vector (m, n, p) = (0, 0, 0) be avoided.

The sum in eq.(1.1) is only conditionally convergent. One way to proceed is to interpret

eq.(1.1) as a sum over expanding cubes (Borwein et. al 1985). Another approach is to

interpret M as the analytic continuation of a sum—with (m2 + n2 + p2)−s appearing with

ℜ(s) > 3/2—to a definite value at s = 1/2.

It has been an aim of many researchers to recast such lattice sums in terms of functions

that decay exponentially fast for large r =
√

m2 + n2 + p2. Equation (1.1) can be evaluated

using Ewald method (Ewald 1920). The Ewald expansion certainly enjoys rapid decay, but

error functions need be evaluated and this can be computationally problematic. Important

work on Madelung constant and lattice sums has been carried out by Hautot (1975), Zucker

(1976), Glasser and Zucker (1980), Borwein et. al (1985) and Crandall and Buhler (1987).

Many of these historical treatments involve rapidly decaying sums of elementary functions. A

fascinating account of Madelung constant, together with some new representations (such as a

finite-domain integral representation), has been given by Crandall (1999). The present work

uses that reference essentially as a starting point in a new quest to accelerate convergence.

II. MADELUNG CONSTANT

We start with the identity

∞
∑

k=−∞

1
[

(x + k)2 + r2
]

1

2
+ν

=

√
π

Γ
(

ν + 1

2

)

{

Γ (ν)

r2ν
+ 4

(π

r

)ν

(2.1)

×
∞
∑

l=1

lνKν (2πlr) cos (2πlx)

}

.
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This identity can be found in Sperb (1996). A special case of the above identity is also found

in Glasser and Zucker (1980). An easy proof may of the identity may be obtained with an

application of the Possion summation theorem to the integral (Gradshteyn and Ryzhik 1965)

Kν (λx) =
Γ
(

ν + 1

2

)

(2λ)ν

√
πxν

∫

∞

0

dk
cos (kx)

(k2 + λ2)ν+
1

2

. (2.2)

We note an important aspect of the identity in eq. (2.1). With the help of this identity

we can relate a summation in 2ν + 1 dimensional space to a summation in 2ν dimensional

space. In fact taking ν = 0 one can easily obtain a generalization of Lekner’s (1998) work

on Coulomb sums for a triclinic cell.

Putting x = 0, ν = 1/2, r =
√

m2 + n2 + p2 and summing over integers m, n and p we

obtain

S =

∞
∑

k=−∞

′
∑

m,n,p

(−1)m+n+p

k2 + m2 + n2 + p2
(2.3)

= π

′
∑

m,n,p

(−1)m+n+p

√

m2 + n2 + p2
+ 4π

′
∑

m,n,p

(−1)m+n+p

√

m2 + n2 + p2

[

exp
(

2π
√

m2 + n2 + p2

)

− 1
] ,

where we have used

K1/2 (x) =

√

π

2x
exp (−x) . (2.4)

Now, the second sum on the lhs in eq.(2.3) can be obtained in a closed form,

S = lim
α→0

∞
∑

k=−∞

′
∑

m,n,p

(−1)m+n+p

k2 + m2 + n2 + p2 + α2
(2.5)

= lim
α→0

(

∑

k,m,n,p

(−1)m+n+p

k2 + m2 + n2 + p2 + α2
−
∑

k

1

k2 + α2

)

=
′
∑

k,m,n,p

(−1)m+n+p

k2 + m2 + n2 + p2
+ lim

α→0

(

1

α2
−
∑

k

1

k2 + α2

)

.

The first sum on the rhs of eq. (2.5) may be evaluated with help of results given in Zucker

(1984):
′
∑

k,m,n,p

(−1)m+n+p

k2 + m2 + n2 + p2
= −π

2
− ln 2, (2.6)

while the second part is simply

lim
α→0

(

1

α2
−
∑

k

1

k2 + α2

)

= lim
α→0

(

1

α2
− π coth (πα)

α

)

= −π2

3
. (2.7)
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Thus we obtain

M = −1

2
− ln 2

π
− π

3
(2.8)

− 2

′
∑

m,n,p

(−1)m+n+p

√

m2 + n2 + p2

[

exp
(

2π
√

m2 + n2 + p2

)

− 1
] .

Equation (2.8) is one of the important results of this paper. We will now derive an alternate

expression for M again starting from the basic identity in eq.(2.1). This time we substitute

x = 1/2, which summing over m, n and p as before leads to

∞
∑

k=−∞

′
∑

m,n,p

(−1)m+n+p

(

k + 1

2

)2
+ m2 + n2 + p2

= π

′
∑

m,n,p

(−1)m+n+p

√

m2 + n2 + p2
(2.9)

− 2π

′
∑

m,n,p

(−1)m+n+p

√

m2 + n2 + p2

[

exp
(

2π
√

m2 + n2 + p2

)

+ 1
] .

Again the rhs of eq. (2.9) can be obtained in a closed form. We start with

∞
∑

k=−∞

′
∑

m,n,p

(−1)m+n+p

(

k + 1

2

)2
+ m2 + n2 + p2

(2.10)

=
∑

k,m,n,p

(−1)m+n+p

(

k + 1

2

)2
+ m2 + n2 + p2

−
∞
∑

k=−∞

1
(

k + 1

2

)2
.

The first sum on the rhs is again be obtained from the results contained in Zucker (1984):

∑

k,m,n,p

(−1)m+n+p

(

k + 1

2

)2
+ m2 + n2 + p2

= π
√

2. (2.11)

The second sum on the rhs of Eq.(2.10) can be easily evaluated to be π2. Thus we obtain

M =
√

2 − π + 2
′
∑

m,n,p

(−1)m+n+p

√

m2 + n2 + p2

[

exp
(

2π
√

m2 + n2 + p2

)

+ 1
] . (2.12)

We can get a third and fast converging expression for M by taking average over M from

eqs.(2.8) and (2.12). We obtain

M = −1

4
− ln 2

2π
− 2π

3
+

1√
2

(2.13)

− 2
′
∑

m,n,p

(−1)m+n+p

√

m2 + n2 + p2

[

exp
(

4π
√

m2 + n2 + p2

)

− 1
] .
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This is not the whole story yet. We can now make use of a beautiful expression for M

derived by Crandall (1999):

M = −2π +
Γ
(

1

8

)

Γ
(

3

8

)√
2

π3/2
(2.14)

+ 2
′
∑

m,n,p

(−1)m+n+p

√

m2 + n2 + p2

[

exp
(

4π
√

m2 + n2 + p2

)

+ 1
] .

Taking the average over the two values of M from Eq.(2.13) and Eq.(2.14) we obtain

M = −1

8
− ln 2

4π
− 4π

3
+

1

2
√

2
+

Γ
(

1

8

)

Γ
(

3

8

)

π3/2
√

2
(2.15)

− 2
′
∑

m,n,p

(−1)m+n+p

√

m2 + n2 + p2

[

exp
(

8π
√

m2 + n2 + p2

)

− 1
] .

This representation of M is of the form C +S of our Abstract. Even if the whole series part

in Eq.(2.15) be ignored, we obtain

M ≈ C := −1

8
− ln 2

4π
− 4π

3
+

1

2
√

2
+

Γ
(

1

8

)

Γ
(

3

8

)

π3/2
√

2
(2.16)

= −1.747564594(7).

The value of M thus obtained is correct to an astounding 10 good decimals.

The present method also leads to identities such as mentioned below. Eliminating M

from Eq. (2.8) and Eq. (2.12) we obtain

′
∑

m,n,p

(−1)m+n+p

√

m2 + n2 + p2
csch

(

2π
√

m2 + n2 + p2

)

= −1

4
− ln 2

2π
+

π

3
− 1√

2
. (2.17)

Similarly combining eq. (2.13) and eq.(2.14) one obtains

′
∑

m,n,p

(−1)m+n+p

√

m2 + n2 + p2
csch

(

4π
√

m2 + n2 + p2

)

= −1

8
− ln 2

4π
+

2π

3
(2.18)

+
1

2
√

2
−

Γ
(

1

8

)

Γ
(

3

8

)

π3/2
√

2
.

Equations (2.17) and (2.18) can be represented in alternate form involving four dimensional

sums. Another important identity that can be derived with the help of eq.(2.1) and (2.14)

is
∑

k,m,n,p

(−1)m+n+p

(

k + 1

2

)2
+ 4 (m2 + n2 + p2)

=
Γ
(

1

8

)

Γ
(

3

8

)

√
2π

. (2.19)
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III. CONCLUSION

We have given a new representation of the Madelung constant. The representation given

here is very fast. Ignoring the series altogether, one still obtains Madelung constant correct

up to ten decimal figures. Here I note that if one could obtain the sum

∑

k,m,n,p

(−1)m+n+p

(

k + 1

2

)2
+ 16 (m2 + n2 + p2)

, (3.1)

in a closed from, then by combining that result with the one given here, one may obtain a

representation of Madelung constant, where even dropping the series part, one would still

obtain Madelung constant correct close to 20 decimal points. A probable approach may

be through theta function identities involving q-series. However, we are not familiar with

a systematic method of converting a product of theta function into a q-series, if one exist.

It is hoped that the approach pointed out here may open up ways for researchers to look

afresh on whether the Madelung constant can be expressed in a closed form.
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