
A Deep Learning Approach

to generate Beethoven's 10th Symphony

Trabajo de Fin de Grado
Curso 2018�2019

Autor
Paula Muñoz Lago

Director
Gonzalo Méndez Pozo

Grado en Ingeniería Informática

Facultad de Informática

Universidad Complutense de Madrid

A Deep Learning Approach

to generate Beethoven's 10th

Symphony

Trabajo de Fin de Grado en Ingeniería Informática

Departamento de Ingeniería del Software e Inteligencia
Arti�cial

Autor
Paula Muñoz Lago

Director
Gonzalo Méndez Pozo

Convocatoria: Junio 2019

Grado en Ingeniería Informática

Facultad de Informática

Universidad Complutense de Madrid

31 de mayo de 2019

Dedicatoria

A José Lago, mi abuelo, a quien le hubiese encantado verme terminar
esta etapa. Una vez me dijo: �Una carrera universitaria es difícil, pero la
verdadera carrera es una vida sin estudios�. Non sei cándo nos veremos.

A mi madre, por el ánimo y apoyo constante, a mi padre por la imagi-
nación y a mi hermana por acompañarme en cada momento de mi vida.

A mis amigos, por ayudarme a levantarme del suelo cada vez que he caído
a lo largo de estos cuatro años de carrera. Qué suerte que os hayáis cruzado
en mi camino.

v

Agradecimientos

A lo largo de mi etapa universitaria he tenido la inmensa suerte de contar
con profesores que me han motivado a alcanzar mis objetivos y animado a
seguir aprendiendo y a dar todo de mí. Quiero dar un agradecimiento especial
a Gonzalo Méndez por guiar mis pasos académicos desde que fue mi profesor
hasta que ha dirigido este TFG. Gracias por aceptar esta idea tan ambiciosa,
ponerle tanto empeño a que todo quedase perfecto y animarme a conseguirlo
sin cortarme las alas. Sin todo esto no hubiese conseguido llegar hasta aquí.

Quiero agradecer al departamento de Ingeniería del Software e Inteligen-
cia Arti�cial de la UCM por prestarme recursos informáticos de los que yo
no disponía, a lo largo de este año, para conseguir los resultados re�ejados
en esta memoria.

Gracias a todas las personas con las que he coincidido en mi camino
y han compartido su conocimiento conmigo, ayudándome a crecer y a ser
mejor persona.

vii

Abstract

Luidwig van Beethoven composed his symphonies between 1799 and 1825,
when he was writing his Tenth symphony. As we dispose of a great amount
of data belonging to his work, the purpose of this project is to work on the
possibility of extracting patterns on his compositional model and generate
what would have been his last symphony, the Tenth.

Computational creativity is an Arti�cial Intelligence �eld which is still
being developed. One of its sub�elds is music generation, to which this
project belongs. Also, there is an open discussion about the belonging of the
creativity, to the machine or the programmer.

Firstly we have extracted all the symphonies' scores information, struc-
turing them by instrument. Then we have used Deep Learning techniques to
extract knowledge from the data and later generate new music. The neural
network model is built based on the Long Short-Therm Memory (LSTM)
neural networks, which are distinguished from others since these ones con-
tain a memory module. After training the model and predict new scores, the
generated music has been analyzed by comparing the input data with the
results, and establishing di�erences between the generated outputs based on
the training data used to obtain them. The result's structure depends on the
symphonies used for training, so obtained music presents Beethoven's style
characteristics.

Keywords

Music, Beethoven, arti�cial intelligence, machine learning, deep learning,
music prediction, music generation, keras, neural network, LSTM.

ix

Resumen

Luidwig van Beethoven compuso sus sinfonías entre 1799 y 1825, cuando
estaba componiendo su décima sinfonía. Como disponemos de una gran
cantidad de datos provenientes de su obra, el objetivo de este proyecto es
investigar en la posibilidad de extraer patrones en su modelo composicional
y generar lo que hubiese sido su última sinfonía, la Décima.

La creatividad computacional es un campo de la Inteligencia Arti�cial
que se encuentra todavía en desarrollo, uno de los campos que abarca la
creatividad computacional es la generación de música, en el que se encuentra
este proyecto. Además, existe un debate abierto sobre si las máquinas pueden
llegar a ser creativas, o el mérito debe atribuirse al programador.

En primer lugar hemos extraido la información de las partituras de todas
sus sinfonías, estructurándolas por instrumento. A continuación hemos uti-
lizado técnicas de aprendizaje automático para extraer conocimiento de los
datos y posteriormente predecir música. El modelo neuronal se ha basado en
las redes neuronales LSTM (Long Short-Therm Memory), que se diferencian
del resto dado a que disponen de memoria. Tras entrenar el modelo y pre-
decir nuevas partituras, la música generada ha sido estudiada comparando
los datos de entrada con dichos resultados, y estableciendo diferencias entre
los resultados obtenidos dependiendo de los datos usados para generarlos.
La estructura de los resultados depende de las sinfonías que se han usado
para aprender de ellas, por lo que la música obtenida presenta características
reconocibles del estilo de Beethoven.

Palabras clave

Música, Beethoven, Inteligencia Arti�cial, aprendizaje automático, apren-
dizaje profundo, predicción de música, generación de música, keras, neural
network, LSTM

xi

Contents

1. Introduction 1

1.1. Motivation . 1

1.2. Project Aim . 2

2. Introducción 5

2.1. Motivación . 5

2.2. Objetivo del proyecto . 6

3. State of the art 9

3.1. Computational Creativity . 9

3.1.1. Music Creativity . 10

3.2. Markov chains . 12

3.2.1. Hidden Markov Models 13

3.3. Machine Learning . 13

3.3.1. Supervised learning . 15

3.3.2. Unsupervised learning 17

3.3.3. Reinforcement learning 18

3.4. Deep Learning . 19

3.4.1. Convolutional Neural Networks (CNNs) 21

3.4.2. Generative Adversarial Networks (GANs) 22

3.4.3. Recurrent Neural Networks (RNN) 22

3.4.4. Long Short Term Memory Networks (LSTM) 23

3.4.5. Toolkits . 24

3.5. Conclusions . 26

4. Deep Learning approach for music generation 29

4.1. Musical de�nitions . 29

4.2. Input data . 30

4.2.1. MIDI . 31

4.2.2. MusicXML . 33

4.2.3. HDF5 . 33

xiii

Índice

4.3. Music generation . 34

4.3.1. LSTM Network design 36

4.3.2. Training the Neural Network 37

4.3.3. Predicting new music 39

4.3.4. First approach: Music generation for individual instru-
ments . 41

4.3.5. Second approach: Music generation for coordinated
instruments . 47

4.3.6. Third approach: Music generation for coordinated in-
struments with data homogenization 51

5. Conclusions and Future Work 59
5.1. Conclusions . 59

5.2. Future work . 60

6. Conclusiones y Trabajo Futuro 63
6.1. Conclusiones . 63

6.2. Trabajo Futuro . 64

A. An approach to Beethoven's 10th Symphony 67

Bibliography 77

xiv

List of �gures

3.1. Beethoven's 9th symphony's Ode to Joy main motive 12

3.2. Simple Splitting . 14

3.3. K-fold cross validation . 14

3.4. Sales per advertising expenses 16

3.5. Random forest visual performance 16

3.6. SVN visual performance . 17

3.7. Reinforcement learning process 18

3.8. Perceptron model . 19

3.9. 2 layer Feedforward network 20

3.10. Sigmoid function shape . 20

3.11. 3-layer Convolutional Neural Network 21

3.12. Generative Adversarial Networks (GANs) 22

3.13. RNN: unrolled version . 23

3.14. Beethoven's Fifth symphony snippet 23

3.15. LSTM Neural Network cell 24

4.1. Note names of the chromatic scale 29

4.2. Notes with di�erent pitches 30

4.3. Beethoven's Fifth symphony score snippet 31

4.4. Music21 .mid �les parsing . 32

4.5. Final system's input and outputs formats 32

4.6. Snippet of Beethoven's Fifth Symphony in C minor 34

4.7. Snippet of Beethoven's Fifth Symphony in C minor 35

4.8. Model, being N the number of di�erent tuples of information 36

4.9. Second model, being N the number of di�erent tuples of in-
formation . 37

4.10. Violin's Ode To Joy snippet 37

4.11. Training schema . 39

4.12. Key scale . 40

xv

Índice de figuras

4.13. Snippet of Beethoven's Seventh Symphony in C minor repre-
senting the �rst approach's way of storing the musical infor-
mation . 42

4.14. Prediction scheme . 43

4.15. Results from training with the Fifth Symphony 44

4.16. Results from training with the Fifth Symphony allowing rests 44

4.17. Patterns and keys to apply manual changes. Green squares
denote the patterns and orange squares the items that high-
lights the need of manual improvements 44

4.18. Results from training with the Fifth Symphony with manual
improvements . 45

4.19. Results from training with the Seventh Symphony with man-
ual improvements . 45

4.20. Results from training with the Fifth and Seventh Symphony . 46

4.21. Results from training with the Fifth, Seventh and Ninth Sym-
phony . 46

4.22. Results from training separately 7 di�erent instruments with
the Seventh symphony . 47

4.23. Snippet of Beethoven's Seventh Symphony in C minor rep-
resenting the second approach's way of storing the musical
information . 48

4.24. Second approach trained with the Seventh symphony for Flutes
and Violins . 50

4.25. Score obtained from training Violins, Violas and Violoncellos
with the Seventh symphony 51

4.26. Snippet of Beethoven's Seventh Symphony in C minor repre-
senting the third approach's way of storing the musical infor-
mation . 52

4.27. Score obtained from training with the Seventh symphony for
Violins, Violas, Violoncellos, Contrabasses, Flute, Oboe and
Clarinet . 55

4.28. Score obtained from training with the Fifth, Seventh and
Ninth symphony for Violins, Violas, Violoncellos, Contrabasses,
Flute, Oboe and Clarinet . 56

4.29. Score obtained from training Violins with the Fifth symphony 56

4.30. Score obtained from training Violins with the Fifth symphony
using the second model . 57

xvi

https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th-NoRests.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th-WithRests.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th-WithRests.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th-WithRests.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th-WithRests.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th-WithRestsAndManualImprovements.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th-WithRestsAndManualImprovements.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-7th.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-7th.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th%2B7th.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th%2B7th%2B9th.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th%2B7th%2B9th.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins%2CViolas%2CVioloncellos%2CContrabasses%2CFlute%2COboe%2CClarinet-7th.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins%2CViolas%2CVioloncellos%2CContrabasses%2CFlute%2COboe%2CClarinet-7th.mp3
https://github.com/paulamlago/Generated_Music/blob/master/Second%20approach/Flute%2CViolins.mp3
https://github.com/paulamlago/Generated_Music/blob/master/Second%20approach/Flute%2CViolins.mp3
https://github.com/paulamlago/Generated_Music/blob/master/Second%20approach/Violins%2CViolas%2CVioloncellos.mp3
https://github.com/paulamlago/Generated_Music/blob/master/Second%20approach/Violins%2CViolas%2CVioloncellos.mp3
https://github.com/paulamlago/Generated_Music/blob/master/Third%20approach/Violin%20I%2CViolin%20II%2CViolas%2CVioloncellos%2CContrabasses%2CFlute%2COboe%2CClarinet-7.mp3
https://github.com/paulamlago/Generated_Music/blob/master/Third%20approach/Violin%20I%2CViolin%20II%2CViolas%2CVioloncellos%2CContrabasses%2CFlute%2COboe%2CClarinet-7.mp3
https://github.com/paulamlago/Generated_Music/blob/master/Third%20approach/Violin%20I%2CViolin%20II%2CViolas%2CVioloncellos%2CContrabasses%2CFlute%2COboe%2CClarinet-7.mp3
https://github.com/paulamlago/Generated_Music/blob/master/Third%20approach/Violin%20I%2CViolin%20II%2CViolas%2CVioloncellos%2CContrabasses%2CFlute%2COboe%2CClarinet-5%2C7%2C9.mid
https://github.com/paulamlago/Generated_Music/blob/master/Third%20approach/Violin%20I%2CViolin%20II%2CViolas%2CVioloncellos%2CContrabasses%2CFlute%2COboe%2CClarinet-5%2C7%2C9.mid
https://github.com/paulamlago/Generated_Music/blob/master/Third%20approach/Violin%20I%2CViolin%20II%2CViolas%2CVioloncellos%2CContrabasses%2CFlute%2COboe%2CClarinet-5%2C7%2C9.mid
https://github.com/paulamlago/Generated_Music/blob/master/Third%20approach/Violin%20I%2CViolin%20II-5th.mid
https://github.com/paulamlago/Generated_Music/blob/master/Third%20approach/Violin%20I%2CViolin%20II-5-Model2.mid
https://github.com/paulamlago/Generated_Music/blob/master/Third%20approach/Violin%20I%2CViolin%20II-5-Model2.mid

List of tables

3.1. Transition matrix based on Figure 3.1 12

3.2. Sales per amount expend in advertising in millions of Euros . 15

4.1. Midi notes table . 31

4.2. MIDI information . 32

4.3. Conversion matrix from data to number 38

4.4. Final violin's Ode to Joy number representation 38

4.5. First compasses extraction of input and output sequences with
sequence length = 2 . 38

4.6. First compasses extraction of input and output sequences with
sequence length = 4 . 39

4.7. First approach for clarinet . 42

4.8. Second approach for clarinet 48

4.9. Second approach for clarinet and violoncello 49

4.10. Second approach for clarinet and violoncello sorted by o�set . 49

4.11. Final dataset: Second approach for clarinet and violoncello . . 50

4.12. Third approach for clarinet violin and violoncello sorted by
o�set . 53

4.13. Third approach for clarinet violin and violoncello sorted by
o�set with generalized note durations 54

5.1. Experiments summary . 61

6.1. Resumen de los experimentos 65

xvii

Chapter 1

Introduction

1.1. Motivation

Music is an art, but also a global language present in every historical
stage. Flutes have been found made with bones dated in prehistory. Al-
though India has the oldest tradition regarding this art, it is in China where
the largest prehistorical musical instrument collection has been found. The
Ancient Egyptians acknowledged Thoth as the god that invented music, and
there is evidence that they played harps, �utes and clarinets. Later on, mu-
sic became an important part in the society-life of Ancient Greeks, creating
choruses and performing at the theater, improving that way the cultural life
in that moment, (Wikipedia, 2019a).

Medieval music was characteristic due to its monophonic chants. The
musical notation was modi�ed by the catholic church so chants' lyrics were
written down along with the notes. Non religious music experienced a great
development in the Renaissance, since with the invention of the printing
press, music became less expensive due to the mass production of scores
(Reese, 1959).

From 1600 to 1750 a new musical style was born in Europe which made
music complexity increase exponentially: the Baroque. In this time, the �rst
operas and polyphonic music (multiple melody lines playing at the same
time) were written, and some music forms such as the Fugue, Sonata or
Symphony appeared. Some signi�cant baroque German composers are Bach,
Handel, or the italian Vivaldi. Classical music covers from 1750 to 1820,
and some baroque instruments evolutioned to the versions that are in use
today, such as the Baroque violin or oboe, which transitioned to the common
violin and oboe, while some other instruments fell into disuse, such as the
Viola d'amore (Wikipedia, 2019b). Musical forms previously created where
developed such as the Symphonies or the Sonata, while others where created
(Trio, string quartet etc). Classical composer Wolfgang Amadeus Mozart
wrote 23 string quartets for two violins, viola and violoncello. A signi�cant

1

Chapter 1. Introduction

change in the Classical period was the increase of public concert, bringing
composers the possibility to earn money without being hired by an aristocrat.
This led to a growth in the number of orchestras, and the need of building
auditoriums for them. The greatest Classical composers of this epoch are:
Haydn, Mozart, Schubert or Beethoven. The two last ones are considered
composers of the latest Classicism and beginnings of the Romanticism. This
style was led by the individualism, emotions and the nature. The musical
style became more expressive, dramatic and passionate. Some composers
of this period are Wagner or Brahms. Musical motifs start to replace the
melody, as it can be seen with the distinctive motive from Beethoven's Fifth
Symphony, composed between 1804 and 1808.

The Impressionism is a musical movement emerged between the late 19th

and the early 20th century, composers of this epoch such as Claude Debussy
or Maurice Ravel tried new instrument combinations to obtain new sound
e�ects.

20th century music was characterized with the rhythms and sound explo-
ration. The most meaningful genre born in this century is Jazz, and during
the second half of the century, Rock music became the most popular. Elec-
tric technologies such as gramophones or radios enabled sound recordings to
get to more people, causing the growth of popular music, as it allowed artists
to be known worldwide by the succession of formats, form vinyl records to
digital audio in the mid-1990s. Thanks to the technology evolution and
the computational power obtained at this historical stage, the �rst Arti�cial
Intelligence capable of generating music was created.

As Computational Creativity is a currently developing �eld, the goal
of this project is to explore the possibilities that the Arti�cial Intelligence
brings us in order to know how Beethoven's 10th symphony would sound
based on his published symphonies.

1.2. Project Aim

Given the music historical line, it is now possible to deeply explore what
great composers created in the past in order to bring new music to the
21st century, taking their work into account. The goal of this project is to
compose a new Symphony based on Beethoven's work. We have also taken
into account his life historical line, since the most brilliant symphonies were
the last ones, when he was su�ering from deafness and totally involved in a
depression.

Romantic composer Ludwig van Beethoven wrote his Symphonies from
1799 to 1825, when he �nished the No. 9. Although there is no constancy
of the existence of the 10th Symphony score, there exists some sheets found
in Beethoven's house after his death that are thought to be part of the
upcoming Symphony. Those sheets are kept in the museum dedicated to his

2

1.2. Project Aim

life in his natal city, Bonn, although they can be seen online 1. The public
manuscript is not easy to read and understand, so that existing data will not
be used in this project.

The �rst movement of the 10th Symphony 2 was composed in 1988 from
50 fragments by the musicologist Barry Cooper, who wrote a book relating
Beethoven's life (Cooper, 2000). Since it cannot be proved that those found
sketches were intended to be part of the 10th symphony, Barry Cooper's work
has caused a big controversy (Nieuwenhuizen, 2001).

A legend arises from this cause, called �the 10th Symphony curse�. Fol-
lowing Beethoven's steps, several great composers were found dead before
�nishing their 10th Symphony. This is the case of authors such as Franz
Schubert (1797-1828), Anton Bruckner (1824-1896), Antonín Dvo°ák (1842-
1904) or Gustav Mahler (1860-1911). The last one tried to avoid the curse
by not assigning a number to his ninth Symphony, in order to be able to
assign the number 9 to his tenth Symphony. Despite his e�ort in avoiding
the curse, he was found dead while composing the last one.

This project is structured as follows. Previous work on using Arti�cial
Intelligence in music generation and the most relevant techniques used for
this purpose are exposed in the State of the art (chapter 3). After that,
the work developed for this project is explained in detail, presenting the
Deep Learning technique used, how the data is represented and the needed
toolkits (chapter 4). Then, the Music Generation section is divided in: a
introduction to the di�erent possible musical data representations, and the
music generation process. In this last section we explain the neural network
design, the training and prediction and �nally we have explained the three
di�erent approaches, its input datasets descriptions and results obtained with
each of the experiments. The conclusions and future work are described in
the last chapter, number 5.

1https://da.beethoven.de/sixcms/detail.php?id=15241&template=dokseite_

digitales_archiv_en&_eid=1510&_ug=Symphonies&_werkid=143&_dokid=wm188&_opus=

Unv%203&_mid=Works&suchparameter=&_sucheinstieg=&_seite=1
2https://en.wikipedia.org/wiki/Symphony_No._10_(Beethoven/Cooper)

3

https://da.beethoven.de/sixcms/detail.php?id=15241&template=dokseite_digitales_archiv_en&_eid=1510&_ug=Symphonies&_werkid=143&_dokid=wm188&_opus=Unv%203&_mid=Works&suchparameter=&_sucheinstieg=&_seite=1
https://da.beethoven.de/sixcms/detail.php?id=15241&template=dokseite_digitales_archiv_en&_eid=1510&_ug=Symphonies&_werkid=143&_dokid=wm188&_opus=Unv%203&_mid=Works&suchparameter=&_sucheinstieg=&_seite=1
https://da.beethoven.de/sixcms/detail.php?id=15241&template=dokseite_digitales_archiv_en&_eid=1510&_ug=Symphonies&_werkid=143&_dokid=wm188&_opus=Unv%203&_mid=Works&suchparameter=&_sucheinstieg=&_seite=1
https://en.wikipedia.org/wiki/Symphony_No._10_(Beethoven/Cooper)

Chapter 2

Introducción

2.1. Motivación

La música es un arte, pero también un lenguaje universal presente en
todas las etapas de la historia. Se han encontrado �autas hechas con huesos
datadas en la prehistoria. Aunque el país del que se conoce la tradición mu-
sical más antigua es la India, es en China donde se ha encontrado la colección
de instrumentos musicales prehistóricos más amplia. En el antiguo egipto
reconocieron a Thoth como el dios que inventó la música, y hay evidencias
de que tocaban arpas, �autas y clarinetes. Después la música se convirtió en
una parte importante de la vida social en la antigua grecia, creando coros y
haciendo representaciones en los teatros, incrementando la vida cultural en
aquel momento, , (Wikipedia, 2019a).

La música medieval estuvo caracterizada por cantos monofónicos. La
notación musical fue modi�cada por la iglesia católica, para que la letra de
dichos cantos pudiese ser escrita junto con las notas. La música no reli-
giosa tuvo un gran desarrollo en el Renacimiento. Debido a la invención de
la imprenta, la música se hizo más barata, dada la producción masiva de
partituras (Reese, 1959).

De 1600 a 1750 se desarrolló un nuevo estilo en Europa, el cual hizo que la
complejidad musical se incrementase exponencialmente: el Barroco. Durante
este periodo se escribieron las primeras óperas y piezas de música polifónica
(varias lineas musicales tocadas al mismo tiempo), y aparecieron algunas for-
mas musicales como la fuga, la sonata o la sinfonía. Algunos compositores
barrocos signi�cantes fueron los alemanes Bach, Handel o el italiano Vivaldi.
La música clásica abarca desde 1750 hasta 1820, y destaca la evolución de
instrumentos barrocos hasta las versiones que conocemos actualmente, como
el violín o el oboe, mientras que otros instrumentos cayeron en desuso, como
la Viola de amor (Wikipedia, 2019b). Las formas musicales creadas previ-
amente, como las sinfonías o las sonatas tuvieron un gran desarrollo, a la
vez que surgían otras nuevas, tales como los tríos, los cuartetos de cuerda,

5

Chapter 2. Introducción

etc. El compositor clásico Wolfgang Amadeus Mozart escribió 23 cuartetos
de cuerda para dos violines, viola y violoncello. Un cambio signi�cativo en el
periodo clásico fue el incremento de los conciertos públicos, aportando a los
compositores la posibilidad de ganar dinero sin tener que ser contratados por
un aristócrata. Esto conllevó a un crecimiento en el número de orquestas,
y en la necesidad de construir auditorios para ellas. Los compositores clási-
cos más importantes son: Haydn, Mozart, Shubert o Beethoven. Los dos
últimos son considerados compositores de �nales del Clasicismo y principios
del Romanticismo. Este movimiento estuvo conducido por el individual-
ismo, las emociones y la naturaleza. El estilo musical se hizo más expresivo,
dramático y apasionado. Algunos compositores son Wagner o Brahms. Los
motivos musicales empezaron a sustituir a las melodías, como puede verse
en el destacable motivo de la quinta sinfonía de Beethoven, compuesta entre
1804 y 1808.

El Impresionismo es un movimiento musical que emerge a �nales del siglo
XIX y principios del XX, los compositores pertenecientes a este movimiento
como Claude Debussy o Maurice Ravel probaron combinaciones de instru-
mentos nuevas para obtener efectos sonoros diferentes.

La música del siglo XX se caracterizó por la exploración de ritmos y
sonidos, el género más signi�cativo nacido en este siglo fue el Jazz, y durante
la segunda mitad del siglo, el Rock fue el estilo más popular. Las nuevas
invenciones como el gramófono o la radio permitieron que las grabaciones de
sonido llegasen a más personas, propiciando así el crecimiento de la música
popular, ya que permitió a los artistas ser conocicos mundialmente a través
de la sucesión de formatos, desde vinilos hasta el audio digital a mediadios de
1990. Gracias a la evolución de la tecnología y la capacidad computacional
obtenida en esta etapa histórica, se creó la primera Inteligencia Arti�cial
capaz de generar música.

Dado que la Creatividad Computacional es un campo en desarrollo ac-
tualmente, el objetivo de este proyecto es explorar las posibilidades que la
Inteligencia Arti�cial nos aporta para conocer cómo hubiese sonado la décima
sinfonía de Beethoven basándonos en sus sinfonías previamente publicadas.

2.2. Objetivo del proyecto

Dada la línea histórica musical, ahora es posible explorar en profundidad
lo que los grandes compositores crearon a lo largo de la historia para con-
seguir nueva música en el siglo XXI en base a su trabajo. El objetivo de este
proyecto es componer una nueva sinfonía basada en la obra de Beethoven.
También hemos tenido en cuenta la línea histórica de su vida, dado que las
sinfonías más brillantes fueron las últimas, cuando estaba sufriendo sordera
y estaba totalmente inmerso en una depresión.

El compositor romántico Ludwig van Beethoven escribió sus sinfonías en-

6

2.2. Objetivo del proyecto

tre 1799 y 1825, cuando terminó la número 9. Aunque no existe constancia
de la existencia de la partitura de la décima sinfonía, existen algunas parti-
turas encontradas en la casa del compositor tras su muerte el 26 de Marzo
de 1827, que se cree que podrían pertenecer a la siguiente sinfonía. Estas
partituras están conservadas en el museo dedicado a su vida en su ciudad
natal, Bonn, aunque pueden verse online 1. El manuscrito no es fácil de leer
y entender, por lo que esa información no será utilizada en este proyecto.
En el primer movimiento de la décima sinfonía 2 construyó en 1988 a partir
de 50 fragmentos por el musicólogo Barry Cooper, el cual escribió un libro
relatando la vida de Beetoven (Cooper, 2000). Dado que no se puede com-
probar que esos manuscritos fuesen a formar parte de la décima sinfonía, el
trabajo de Barry Cooper ha causado mucha controversia.

A raíz del fallecimiento de Beethoven surge una leyenda llamada "la

maldición de la décima sinfonía". Siguiendo los pasos de Beethoven, otros
grandes compositores fallecieron antes de terminar de componer su décima
sinfonía. Este es el caso de autores como Franz Shubert (1797-1828), Anton
Bruckner (1824-1896), Antonín Dvo°ák (1842-1904) or Gustav Mahler (1860-
1911). El último intentó evitar la maldición no escribiendo el número en la
novena, y escribiendo el número 9 en la décima. A pesar del esfuerzo por
evitar la maldición, falleció componiendo la última.

Este proyecto está organizado de la siguiente forma. El trabajo previo
en generación de música utilizando Inteligencia Arti�cial y las técnicas más
relevantes existentes se exponen y explican en el estado del arte (Capítulo
3). Después, el trabajo desarrollado para este proyecto se explica en detalle,
presentando la técnica de aprendizaje profundo utilizada, cómo se representa
la información y las herramientas utilizadas (Capítulo 4). A continuación,
el apartado de generación de música está dividido en: una introducción a
las diferentes formas de representar los datos musicales, y el proceso de
generación musical. En este último apartado explicamos el diseño de la
red neuronal, el entrenamiento y predicción y �nalmente los tres diferentes
acercamientos al objetivo del proyecto, sus datos de entrada y los resultados
obtenidos con cada experimento. Las conclusiones y el trabajo futuro se
desarrollan en el último capítulo, número 6.

1https://da.beethoven.de/sixcms/detail.php?id=15241&template=dokseite_

digitales_archiv_en&_eid=1510&_ug=Symphonies&_werkid=143&_dokid=wm188&_opus=

Unv%203&_mid=Works&suchparameter=&_sucheinstieg=&_seite=1
2https://en.wikipedia.org/wiki/Symphony_No._10_(Beethoven/Cooper)

7

https://da.beethoven.de/sixcms/detail.php?id=15241&template=dokseite_digitales_archiv_en&_eid=1510&_ug=Symphonies&_werkid=143&_dokid=wm188&_opus=Unv%203&_mid=Works&suchparameter=&_sucheinstieg=&_seite=1
https://da.beethoven.de/sixcms/detail.php?id=15241&template=dokseite_digitales_archiv_en&_eid=1510&_ug=Symphonies&_werkid=143&_dokid=wm188&_opus=Unv%203&_mid=Works&suchparameter=&_sucheinstieg=&_seite=1
https://da.beethoven.de/sixcms/detail.php?id=15241&template=dokseite_digitales_archiv_en&_eid=1510&_ug=Symphonies&_werkid=143&_dokid=wm188&_opus=Unv%203&_mid=Works&suchparameter=&_sucheinstieg=&_seite=1
https://en.wikipedia.org/wiki/Symphony_No._10_(Beethoven/Cooper)

Chapter 3

State of the art

In this chapter we describe the historical line that Arti�cial Intelligence
has followed, more concretely the evolution of one of its sub �elds, the com-
putational creativity and the experiments that has been previously released.
Arti�cial Intelligence techniques used for creativity purposes, Markov Chains
and Machine Learning, will be also detailed. After exposing all the possibil-
ities, in the conclusions section we will explain which technique of the ones
previously exposed has been used for this project development.

3.1. Computational Creativity

Computational creativity appears from the intersection of Arti�cial In-
telligence and Arts. Studied since the latter half of the 20th century, it is
considered the study of software development that presents the same creativ-
ity as humans, or enhances human creativity, without being creative itself.
Progress in this �eld have raised many discussions, questioning the cultural
value of the output. It has been hard for the society to assume that machines
can have intelligence, so it is being even harder to assume that they may be
endowed with creativity. (de Mántaras, 2017, p.99-123)

It is yet a novel �eld, so some things are not determined already, such
as how to establish how good or creative the output given by the software
is. Some experts declare that the value of the products obtained needs to be
determined with a Turing Test (Pinar Saygin et al., 2000; Boden, 2010). If
humans can't di�erentiate between machine or human generated products,
then the output has resulted creative. Some others directly concludes that it
is creative if it generates a certain impact on a human being. For instance,
if a generated joke makes someone laugh. (Jordanous, 2012)

There has been relevant experiments on linguistic creativity, generating
narrative (Gervás et al., 2005), getting to write the lines of a musical called
Beyond the fence (Gardner, 2016), showed for the �rst time in London's Arts
Theatre. But also there have been successful experiments generating poems

9

Chapter 3. State of the art

(Montfort et al., 2012; Gervás, 2001), as well as rimes, sarcasm or irony in
jokes (Binsted and Ritchie, 1997; Ritchie, 2009).

Visual arts creativity's most famous program is AARON (Cohen, 1995),
capable of painting on a canvas with a brush using a robotic arm. The
Painting Fool, (Colton, 2012) emulates several painting styles. This �eld
experimented a great growth due to the auctioned AI generated painting,
Portrait of Edmond de Belamy (2018), by the Christie's art gallery of New
York, getting the price of 432.500$, whose algorithm was designed by Obvi-

ous1

3.1.1. Music Creativity

This Computational Creativity sub-�eld started in the early 50's, al-
though the most relevant works are mainly focused on generating coherent
sounds and scores for the human musicians use.

The starting point in music generation with Arti�cial Intelligence was
the formalization of the Markov chains in the early 1900s, later used in the
�rst music generation project (Hiller and Isaacson, 1957). This machine gen-
erated the ILLIAC's suite, a string quartet 2. Generated notes were tested
by heuristic compositional rules. In case that the rules were not violated,
they were kept; otherwise, a backtracking process was followed. This project
excluded any emotional or expressive generation, by just focusing on the
notes.

Later on, a system called CHORAL, which produced the corresponding
harmonization of a given Bach Choral, was developed creating rules and
setting heuristics in a logic-programming language created by the author for
this purpose (Ebcioglu, 1990).

While this probabilistic system can only produce subsequences that al-
ready exist in the original data, in 1989 a new technique is started to be
used for this purpose: Recurrent Neural Networks (Todd and Loy, 1991).
Since this deep learning method is limited by its short-term coherence, in
2002 Long Short Term Memory Networks started to be used for this purpose.
Liu and Ramakrishnan (2014) brought baroque composer Johann Sebastian
Bach back, by trying to create music that has both harmony and melody
and is passable as music composed by humans. Melodies generated with
LSTM networks in existing projects have resulted more musically plausible
than with other models, such as Gated Recurrent Unit (GNR) (Nayebi and
Vitelli, 2015). The �rst music generation project that used neural networks is
MUSACT (Bharucha, 1992), which focuses on learning the harmonic model
and generates expectations after listening to a certain chord. Some other
projects that use variations of this networks models to generate new sounds

1http://obvious-art.com/index.html
2https://www.youtube.com/watch?v=fojKZ1ymZlo

10

http://obvious-art.com/index.html
https://www.youtube.com/watch?v=fojKZ1ymZlo

3.1. Computational Creativity

have been developed through the last few years, using raw audio (Kalingeri
and Grandhe, 2016). BachBot (Liang et al., 2017) composes and completes
music in the style of Bach chorales using an LSTM generative model. They
conducted a discrimination test to determine if the generated music was sim-
ilar to Bach's chorales with 2336 participants, getting a rate of only a 1% of
the people correctly determining which music was generated with BachBot.

SICIB (Morales-Manzanares et al., 2001) is another example of a system
capable of generating music, but in this case, it works using corporal move-
ments thanks to sensors in a dancer. Google'sMagenta3 have been developed
since 2016. It explores the roll of Machine Learning in the artistic creation
process. DeepMusic4, is integrated in Amazon's assistant Alexa as a skill,
so it plays AI generated music. Chinese company Huawei has published
the un�nished part, third and fourth movements, from Shubert's symphony
No. 8 (Mantilla, 2019), which the author left un�nished on purpose. Using
neural networks, the system gave to the musicians some ideas to continue
the music, and then musician and composer Lucas Cantor worked on them.
The �nal version has been played on the 4th of February, 2019, in a unique
concert in London.

Currently best-work known on computer music composition is EMI, (Cope
and Mayer, 1996). This system has successfully emulated Mozart, Brahams,
Bach, Rachmanino� or Chopin's music, generating new music 5. It searches
a pattern or signature as Cope's labeled, in at least two existing pieces of
a concrete compositor. Using one of the artist scores, it locates the signa-
tures to generate the new music, and in order to compose the music between
signatures, it uses a rule analyzer.

The IAMUS (Quintana et al., 2013), named this way after the god of
music, Apolos's son in the ancient Greece, is a computer system created at
Universidad de Málaga. It is capable of composing a full score in 8 min-
utes, using genetic algorithms, whose music has been played by the London
Symphony Orchestra. In this case, chromosomes including all the notes in-
formation are randomly generated, and �tness functions are applied to each
of them. If a note is coded to be played by a violin and this instrument
does not have the possibility to play that note, it is changed. After generat-
ing around 100 scores, a human composer chooses the best one as the �nal
output.

Another challenging �eld relating Musical Creativity is Music Improvi-
sation, since it has more di�culties from a creative point of view. Using
Genetic Algorithms, GenJam (Biles, 1994) emulates a Jazz musician in his
or her improvisation learning process, while the Continuator (Pachet, 2003)
uses a Markov model to generate music in standalone mode, as continuations

3https://magenta.tensorflow.org/
4https://amzn.to/2DBRwJc
5http://artsites.ucsc.edu/faculty/cope/5000.html

11

https://magenta.tensorflow.org/
https://amzn.to/2DBRwJc
http://artsites.ucsc.edu/faculty/cope/5000.html

Chapter 3. State of the art

of musician's input, or as interactive improvisation.

The most relevant workshop that combines music and Arti�cial Intel-
ligence is the International Computer Music Conference, the �rst edition
which took place in 1974.

3.2. Markov chains

A Markov chain is a stochastic model that, given a previous state, de-
scribes a sequence of possible events that can happen after it, generating the
probability for each event to happen based on the last one, and storing them
in a transition matrix. This is also called sampling, (Jean-Pierre Briot and
Pachet, 2017, p. 52).

The so called Markov property is ful�lled if a future prediction of the
process can be made based on the current state as accurate as if it knew
the full history. This technique was the �rst approach to music prediction,
proposed by (Hiller and Isaacson, 1979), characterizing each musical event
in di�erent states of the Markov chain. Although systems needs much more
context to generate a more precise sequence of notes, it has been used since
then for this purpose, as it can be seen by latest studies, such as (Tracy,
2013). There also exists an open source project called MarkovGenerator 6,
that allows the user to simply generate music from chosen Midi �les.

In the following example it can be seen the probability that a certain
note or event appears, depending on the previous one.

Figure 3.1: Beethoven's 9th symphony's Ode to Joy main motive

C D E F G
C 50% 50% 0% 0% 0%

D 33.3% 33.3% 33.3% 0% 0%

E 0% 40% 40% 20% 0%

F 0% 0% 50% 0% 50%

G 0% 0% 0% 50% 50%

Table 3.1: Transition matrix based on Figure 3.1

The current state is given by the row and the prediction by the column,
so it can be seen that the probability that an E appears is a 33.3% if the

6https://forum.pdpatchrepo.info/topic/10791/markovgenerator-a-music-

generator-based-on-markov-chains-with-variable-length

12

https://forum.pdpatchrepo.info/topic/10791/markovgenerator-a-music-generator-based-on-markov-chains-with-variable-length
https://forum.pdpatchrepo.info/topic/10791/markovgenerator-a-music-generator-based-on-markov-chains-with-variable-length

3.3. Machine Learning

previous event was a D, 40% in case that the last note was another E or,
most probably, it appears if the last note was an F. Having this information,
a transition state diagram can be drawn. (Kemeny and Snell, 1976).

This technique is also used for text prediction in common phone ap-
plications such as instant messaging, but there exist some other projects
developed using this model such as a Donald Trump tweet prediction 7.

3.2.1. Hidden Markov Models

In some cases, the relevant events that need to be taken into account are
unseen, so the system is partially observable. The Hidden Markov Models
(HMM) allow us to explore both types of events, the seen and the unobserved
(hidden). Furthermore, this model di�ers from the Markov Chains as there
is also a sequence of observations obtained from a vocabulary. The so called
emission probabilities express the probability to obtain an observation from
a certain state.

A �rst-order Hidden Markov Model establishes two di�erent assumptions.
First, the probability of an state is dependent only on the previous one.
Second, the probability of an observation depends on the state that produced
the previous observation. (Seymore et al., 1999)

This model is applied in pattern recognition problems such as speech
handwriting, gesture or speech recognition (Rabiner, 1989), text abstraction
(Conroy and O'leary, 2001), but also in bio-informatics (Krogh et al., 2001).
This model has been used to generate music, although it has been proved that
using this technique in a computational creativity music composition project
brings some limitations such as the lack of global structure and melodic
progression that the generated piece has (Yanchenko, 2017).

3.3. Machine Learning

This sub�eld of Arti�cial Intelligence has experimented a great evolution
due to the data abundance and the growth of computational capacity. In ma-
chine learning, computers identify patterns by learning and predicting from
a dataset, but it is also focused on researching in computational complexity,
trying to improve the so called NP-hard problems, in which problems from
NP di�culty, those that can be solved in a polynomial time.

In order to face a Machine Learning problem, we need a big amount of
data. The datataset used in the creation of the model is divided into several
sets, as shown in Figure 3.2. The model is initially �t on a training dataset,
and learns from it. Once the model is trained with that set, it is able to
predict new values over the test set, taken from the initial dataset, so it
provides an evaluation of how the �nal model �ts on the training dataset,

7https://filiph.github.io/markov/

13

https://filiph.github.io/markov/

Chapter 3. State of the art

as it has never been trained over this dataset. Evaluating the model on this
set provides the possibility to regularize the process, as it returns an error
measure that can determine if there has been over�tting on the training
dataset, which means, learning too much about each examples that the model
doesn't have the ability to generalize in order to �nd patterns (Bishop, 2006).

Figure 3.2: Simple Splitting

There are several ways to split the main dataset for the evaluation pro-
cess. As it can be seen in Figure 3.2, the simple splitting consists on dividing
the main set in 3/4 for training data and 1/4 for testing, in case the test
data is representative and it has the same characteristics as the data shown
in the training set. The second splitting method is the Cross Validation,
which iterates over more subsets, so the accuracy is more precise since it
constitutes the mean of all the parameters obtained in each iteration. An
example of cross validation is the K-Fold Cross Validation, being K = 4 in
Figure 3.3. It can be seen that, instead of taking the same set for testing as
in the simple splitting (Figure 3.2), it is maintained the length of the testing
set (1/4), but iterates over several tests sets with that size.

Figure 3.3: K-fold cross validation

Machine learning can be applied to a wide range of �elds such as medi-
cal diagnosis (Kononenko, 2001), stock market analysis (Patel et al., 2015),
speech recognition (Amodei et al., 2016), DNA sequence classi�cation (Cho
and Won, 2003), robotics or temporal series prediction such as weather, so-
lar radiation (Voyant et al., 2017) or music prediction. There are several
types of learning, such as supervised (Linear regression, Decision trees...),
unsupervised (Clustering, K-means algorithm) or reinforcement learning, as
described in the following subsections.

14

3.3. Machine Learning

3.3.1. Supervised learning

All the examples in the dataset are constituted by attributes and the class
to which they belong. The supervised learning's goal is to �nd classi�cation
rules in order to label new examples, i.e. assign each new example to its
belonging class. For instance, if we had a dataset containing information
about fruits, such as the diameter, length and shape, the supervised learning
system should be able to classify a new fruit example given its diameter,
length and shape.

There are several ways to determine the class of a given example. Some
relevant supervised machine learning algorithms are:

Linear regression: Mostly used for �nding relationships between
variables. In this type of analysis there always exists a linear rela-
tionship between them (Seber and Lee, 2012). Lets use an example
to predict the Sales that our business will achieve depending on the
amount of money we expend in advertising, given the data of the past
9 years.

Sales Advertising
651 23
762 26
856 30
1063 24
1190 43
1298 48
1421 52
1440 57
1518 58

Table 3.2: Sales per amount expend in advertising in millions of Euros

Table 3.2 is represented in Figure 3.4, where the red line shows the
dependency between both axis, so the amount of money that should
be spent in advertising can be estimated depending on how much we
want to earn or vice-versa.

Decision trees: Covering both classi�cation and regression prob-
lems, it uses a tree-like model to decide on a certain data containing
conditional control sequences. Decision trees are written from the root
to the leaves. The internal nodes constitutes the condition, which
based on an attribute, common to all the dataset's entries, will divide
the set into two di�erent subsets. The leafs corresponds to the �nal
decision, i.e. the class to which the new example is classi�ed.

The music genre of a song can be classi�ed using a decision tree (Bres-
san et al., 2017).

15

Chapter 3. State of the art

600 800 1,000 1,200 1,400 1,600

20

30

40

50

60

Sales

A
d
ve
rt
is
in
g
ex
p
en
se
s

Figure 3.4: Sales per advertising expenses

Random forest: Used for both kinds of machine learning problems,
regression and classi�cation. It works building several decision trees,
given some observation and facts, so each tree will return its classi�-
cation results for that class, and the forest will return the class having
more votes, that will be the �nal prediction (Breiman, 2001). This
method prevents the over-�tting problem, so the decision trees are not
really concrete and the new examples can be labeled in a general way.

Figure 3.5: Random forest visual performance

Support vector machines (SVM): Algorithm that can be used for
both classi�cation or regression problems, although it is more common

16

3.3. Machine Learning

to use it for classi�cation. Each dataset's instance is represented in
an N-dimensional space, being N the number of attributes that each
example has. After that, it �nds the frontiers that separates better the
di�erent classes (Wang, 2005). Usually, to �nd the optimal hyperplane
determining the di�erent classes, we need to maximize the margin be-
tween the support vectors (nodes of the di�erent classes closest to the
frontier). As it can be seen in Figure 3.6, the blue and red nodes
placed in coordinates (-8, 1) and (-4, 3) respectively are the so called
support vectors, so the algorithm tries to maximize the margin be-
tween each hyperplane drawn over both support vectors and the �nal
decision boundary, shown as a dashed line.

Figure 3.6: SVN visual performance

3.3.2. Unsupervised learning

Examples in the dataset used for training don't belong to a class, they
don't correspond to any output variable, so the system �nds patterns over
the training set in order to classify them and label new ones. To �nd those
structures, there exists several classi�cation methods such as clustering or
dimensionality reduction. Some popular non supervised machine learning
algorithms are:

K-means: Algorithm used for clustering problems. The goal is to �nd
K groups or clusters in the input data, so each example is assigned to a
clusters. For each one of them, a centroid is distinguished, which will be
the most representative example of each label. In order to �nd patterns
in the training set, the data is represented in the N-dimensional space
(being N the number of attributes that each example has). In each
iteration, a centroid is chosen, and then each instance is labeled as
the closest centroid based on the Euclidean distance. After that, the

17

Chapter 3. State of the art

centroids are recomputed by performing the mean of each data points
in the cluster. Both steps are repeated till no data points change its
cluster (Hartigan and Wong, 1979).

Hierarchical Clustering: Machine learning algorithm whose pur-
pose is to build a clusters hierarchy. It begins with all the examples in
the dataset assigned to a di�erent cluster, so the algorithm will have
as many clusters as the di�erent examples in the input dataset. Then,
two close clusters will join into the same one, and so one. Finally,
all the examples will be joint into one single cluster. The output of
this algorithm can be graphically represented with a dendrogram. It is
built bottom-up, and it shows how the data has been joined into the
di�erent clusters, and the relationship between the initial examples.
Using this technique and studying the evolution of stellar populations,
White and Frenk (1991) researched on the Galaxy formation.

3.3.3. Reinforcement learning

The system receives some type of grati�cation depending on the level of
accuracy, so it can improve its behavior. Typically, Reinforcement Learn-
ing algorithms use dynamic programming techniques, and is based on the
Markov decision process.

Figure 3.7: Reinforcement learning process

As it can be seen in the Figure 3.7 here are two relevant components, an
agent (the RL algorithm) and an environment in which the agent is currently
working. In each step of the interaction the environment sends its state to
the agent, which chooses a certain action to be applied and sends it back
to the environment, changing its state. The environment then sends back
its new state and a reward to the agent. Finally, the Agent updates its
knowledge based on the reward. This process ends when the environment
evaluates the �nal state. (Kaelbling et al., 1996).

Some of the most popular reinforcement learning algorithms are Q-learning,
State action reward state action (SARSA), Deep Q Network (DQN) or Deep
Deterministic Policy Gradient (DDPG).

18

3.4. Deep Learning

3.4. Deep Learning

Deep learning is included in the �eld of Machine learning, but the di�er-
ence is that Deep learning models use neural networks. The �rst arti�cial
network was developed between 1950 and 1960, and it is called a Perceptron
(Rosenblatt, 1958). Rosenblatt proposed the model shown in Figure 3.8 in

Figure 3.8: Perceptron model

which the neuron has n binary inputs, and produces one single output, 0 or
1, based on an activation function. In order to compute the output, we can
assign weights (w) to each input, representing the importance of each entry,
so if the addition of all those weights multiplied by the input is greater or
equal than a threshold, the output is 1, otherwise it is 0. It is mathematically
represented in Equation 3.1.

output =

{
0 if

∑
i xiwi < threshold

1 if
∑

i xiwi ≥ threshold
(3.1)

As a single perceptron can not emulate the human process of making a
decision, a network composed by several neurons is created. The so called
Multilayer Perceptron can be seen in Figure 3.9, also called the Feedforward
Neural Network. Each neuron has a set of inputs, as detailed in Figure 3.1,
and a column of perceptrons compose a layer. The output of each neuron
is forwarded to each perceptron in the second layer, as it is fully connected.
The second layer, also called hidden, can produce more complex decisions
than the �rst one, as it weighs up the results from the �rst layer, and repeats
the same process. In case the problem is a binary classi�er or a regression
problem, the output layer will be composed of just one neuron, but if it is
a multiple classi�cation problem, it will have as many neurons as possible
labels.

This model has evolved to the arti�cial neurons commonly used nowa-
days, the Sigmoid. This neurons are an improved version of the perceptron,
since changes on the weights do not change the output in a considerable way.

19

Chapter 3. State of the art

Figure 3.9: 2 layer Feedforward network

A new concept is introduced, the bias (b), which is a constant added to every
output to normalize it. In this case, the input is not binary, it can take any
value between 0 and 1, and the output is determined by a sigmoid function,
whose Equation is shown in 3.2 and its shape in Figure 3.10, instead of an
activation function based on a threshold. (Nielsen, 2015).

z = w · x+ b

σ(z) =
1

1− e−z

(3.2)

Figure 3.10: Sigmoid function shape

20

3.4. Deep Learning

The deep learning process can be supervised, semi-supervised or unsu-
pervised (Goodfellow et al., 2016). This architectures have been previously
applied to �elds such as Natural Language Processing (Collobert and We-
ston, 2008), Social Network Analysis (Perozzi et al., 2014) and to study the
Computational Creativity (Nguyen et al., 2015).

There exist di�erent types of neural networks. We can distinguish the
previously seen Feedforward Neural Networks, Convolutional, commonly
used for image recognition or Generative Adversarial, which consist on es-
tablishing one neural architecture against a second one, to learn from each
other. Finally, we will explain the Recurrent Neural Networks, and we will
get more deeply into the Long Short Term Memory Networks, which will be
used for the development of this project.

3.4.1. Convolutional Neural Networks (CNNs)

The advancements in Computer Vision has been constructed over this
type of neural networks. Highlighted in the image recognition �eld, they
are used to identify faces (Lawrence et al., 1997), human actions (Ji et al.,
2013) or tra�c signs, so they are, among other things, the main engine that
contribute to self driving cars to have vision (Bojarski et al., 2016).

The architecture of this kind of network assumes that the input is an
image, it assigns weights to several objects in the picture, so the model
turns to be more precise. Each layer has its neurons always arranged in 3
dimensions: width, height, and depth, as it can be seen in the third layer of
the Figure 3.11. That Figure shows a 3-layer CNN, in which the �rst layer
is the input, the second and the third are the hidden ones, and the last one
corresponds to the output layer. Every layer transforms a 3D input into a
3D output of neuron activations. Since the network will reduce the image
into a vector of class scores, the input of the �rst layer will be the image itself
so it will have the same dimensions as the picture, and the output layer will
be a vector of class scores.

Figure 3.11: 3-layer Convolutional Neural Network

After some epochs or iterations, the model can di�erentiate between dom-
inating and less important features in the image and label them using as �nal

21

Chapter 3. State of the art

layer the Softmax Classi�cation, which returns as output a vector of proba-
bilities for a list of outcomes.

3.4.2. Generative Adversarial Networks (GANs)

Proposed in 2014 by Ian Goodfellow, this type of Neural networks consists
of two di�erent architectures established one against the other (Goodfellow
et al., 2014). The structure can be seen in Figure 3.12. Both networks are
simultaneously trained, being the �rst architecture the one with the gener-
ative roll, G, and the second one the discriminative, D. This last network
estimates the probability that an example came directly from the training
data or from the generative architecture. The commit of the �rst network is
to maximize the probability of the second architecture to make a mistake,
generating samples similar to the ones in the training data.

Figure 3.12: Generative Adversarial Networks (GANs)

3.4.3. Recurrent Neural Networks (RNN)

We can think about this kind of networks as a graph in which each neuron
or node performs the same operation. Recurrent Neural Networks process
sequences while retaining a memory of the previous elements. They are used
for speech recognition (Graves et al., 2013b), or temperature measurement
(Ku et al., 1992). It is useful when the element expected to be generated
is dependent on the input previously received, such as the next word in a
sentence or a note in a musical piece. Each cell in the network has some
kind of memory, so it includes the dependency of the expected output with
the previous events.

Figure 3.13 shows how each neuron in this model loops in them, so the
information persists. First, the neuron will receive as input x0, and it will
generate h0, which with x1 will be the input of the next loop, and so on. So,
it is shown that the model keeps remembering the context while training.

22

3.4. Deep Learning

Figure 3.13: RNN: unrolled version

The use of this type of networks allows the system to take into account
the context when making a prediction.

3.4.4. Long Short Term Memory Networks (LSTM)

Proposed in 1997 by Sepp Hochreiter and Jürgen Schmidhuber (Hochre-
iter and Schmidhuber, 1997), they are a variant of RNN that can learn long-
term dependencies just by changing, in the graph proposed by the RNN, each
cell by improved ones. They can recognize long-term patterns, so they are
useful when the network has to remember some information for a long period
of time. That is the reason why this kind of networks are most accurate to
be used in a music generation problem.

They have the ability to connect previous knowledge to the present task.
Sometimes, for instance in speech recognition, we do not need to "remember"
many things in order to guess which will be the next word, but sometimes
phrases are more complex, so we need to have more context in order to
predict the following word. As proved with Figure 3.14, we need the memory
that this type of networks own. We have the sequence F - F - F, a predictor
without memory would return another F. Although by learning from the
notes before, it can extract that after three equal notes, it is probable that
the upcoming note is two lines below the last one.

Figure 3.14: Beethoven's Fifth symphony snippet

Memory provided in each neuron can be seen as a cell that decides to
store or forget the information received based on the priority assigned to that
data. The algorithm learns through time which information is more relevant
in order to set the importance of each data, represented as weights.

As it can be seen in Figure 3.15, the top line represents the �ow of the
cell state. Also, several layers are shown, such as the �rst sigmoid, which
takes information from the previous state and determines if it is useful or

23

Chapter 3. State of the art

Figure 3.15: LSTM Neural Network cell

not, returning 0 or 1. As it is shown with the vertical arrow, it directly
a�ects to the �ow of the cell state. The second layer is composed of another
sigmoid, which chooses the data to be updated from the previous state. The
tanh component creates a vector of candidate values to be added to the
state. The combination of both will be added to the current cell state. The
�nal sigmoid layer decides which parts of the current state are more relevant.
Those will be sent to a tanh function, which will convert the state into 1 or
-1.

3.4.5. Toolkits

In this section we will detail the state of the art in di�erent technologies
that are useful to achieve this project's goal.

We will expose two types of tools, the �rst ones are intended to easily
get into a Machine learning project, and the second ones are oriented to a
music project, simplifying the cooperation between music and technology.

3.4.5.1. Deep learning toolkits

Given the accelerated advancement of Arti�cial Intelligence technologies
and computation capacity, some open source tools have been developed to
get into a Machine Learning project. Attending the wide range of possible
programming languages with which a project of this characteristics could be
developed, the most popular is Python, since its deep learning frameworks
have been developed increasingly in the past 4 years (Raschka, 2015).

24

3.4. Deep Learning

The most popular Python open source toolkits that can be used for a
Machine learning project are the following.

TensorFlow8: Released by Google in 2015, it is one of the most main-
tained and used frameworks for this kind of projects. It allows the
user to develop neural networks using �owgraphs, suited for complex
numerical computations of high volumes of data and and it is not only
available for Python, but C++ or Java too. It was developed for sup-
porting Google's research projects, although nowadays it is used by
other big companies such as Intel or Twitter.

Theano9: Developed in 2007, its main functionality lies on working
with mathematical expressions, de�ning, optimizing and evaluating
them, but it also allows to model several machine learning projects.
This framework is capable of taking the desired structure and trans-
form it into code, which can be integrated with other Python libraries.
It is optimized for GPUs.

Keras10: Released in 2015, constitutes a high level neural networks
API developed in Python to simplify the interaction with di�erent
frameworks such as TensorFlow or Theano, making the creation of
deep learning neural networks models easier. Supports both types of
networks, convolutional and recurrent, and runs optimally on both
CPUs and GPUs. Also, it contains implementations of other neural
networks characteristics such as activation functions, optimizers, and
several tools to make working with image and text data easier.

Ca�e11: Stands for Convolutional Architecture for Fast Feature Em-
bedding, it was writen in C++ and released in 2017. This machine
learning framework focuses on speed and modularity, and it is high-
lighted its fast performance, becoming an usual option for industrial
development.

Torch12: Written in the scripting language Lua and released in 2002,
this machine learning library allows the project to use a wide range
of deep learning algorithms. Providing a machine learning project
with features such as linear algebra routines and GPU, iOS or Android
support.

8https://www.tensorflow.org/
9http://deeplearning.net/software/theano/

10https://keras.io/
11http://caffe.berkeleyvision.org/
12http://torch.ch/

25

https://www.tensorflow.org/
http://deeplearning.net/software/theano/
https://keras.io/
http://caffe.berkeleyvision.org/
http://torch.ch/

Chapter 3. State of the art

3.4.5.2. Musical toolkits

We can work with musical information thanks to the following toolkits,
which makes possible the cooperation between technology and music.

Music21 13: Python toolkit used to study music, it provides an
interface to acquire the scores and creating musical objects, so MIDI
or XML �les can be generated. Also, it can connect applications such
as Musescore.

Magenta14: Open source research project developed by Google ex-
ploring the role of machine learning as a tool in the creative process,
distributed as a Python library and powered by TensorFlow.

Musica15: Open source computational music toolkit written in Python
covering several topics from music theory, audio analysis to high qual-
ity �gure generation.

Musescore 16: Open source program to read scores, it has the pos-
sibility to import and export scores from MIDI format. It already has
many options to handle music such as divide the input by instruments
and process each of them separately.

Rosegarden 17: Music composition and editing environment based
around a MIDI sequencer that features a rich understanding of music
notation and includes basic support for digital audio.

3.5. Conclusions

Taking into account the project aim presented in Section 1.2, we have
considered the following. We need to learn from Beethoven's music, being
the most important factors the note information such as the name, dura-
tion, and where it is placed, but also the context of the note, as if it were
a word in a novel. This last project's characteristic makes the RNN the
wiser networks to develop this computational creativity project. Speci�cally,
the LSTM networks constitutes a subtype of the previously mentioned, but
they are provided with memory, allowing the system to understand the note
in the context of the musical sentence or a musical motive, highlighted in
Beethoven's work.

To work with LSTM Networks, we needed to establish the language and
the libraries that we would use to develop the project. Python is the language

13https://web.mit.edu/music21/
14https://magenta.tensorflow.org/
15https://pypi.org/project/musica-toolkit/
16https://musescore.org/es
17https://www.rosegardenmusic.com/

26

https://web.mit.edu/music21/
https://magenta.tensorflow.org/
https://pypi.org/project/musica-toolkit/
https://musescore.org/es
https://www.rosegardenmusic.com/

3.5. Conclusions

that �ts the most, due to its e�ciency and the wide range of frameworks and
libraries that we can include and work with to ease the development. The
most suitable framework that �ts with this project's aim is Keras, as it
simpli�es the TensorFlow usage and the creation of the deep learning model
that we need to use. Also, in order to process the music information from
the scores, we will use the python library Music21, as it provides a �exible
interface to process several music formats.

27

Chapter 4

Deep Learning approach for

music generation

In this chapter the development of the project will be explained, starting
from an introduction to some musical de�nitions needed to fully understand
the project, the di�erent types of musical representation that we have used
and the one that works better for this project's goal. After that, the music
generation process will be followed from the neural network models used and
the training and prediction processes to a deep explanation on the di�erent
approaches established to achieve the goal of this project, elaborating on
the di�erences in the data representation, results obtained and limitations
present on each of them, which generates the need of �nding a new approach.

4.1. Musical de�nitions

In this section we introduce some musical concepts used throughout this
chapter to fully understand the project development.

Note: Musical event that describes a sound. It contains more infor-
mation apart from the note name, but also the duration, or the pitch
class.

Figure 4.1: Note names of the chromatic scale

29

Chapter 4. Deep Learning approach for music generation

Pitch: Property of sounds that allows a frequency scale ordering, dis-
tinguishing between "higher" or "lower" sounds.

Clef: Musical symbol used to determine the name and pitch of the
written notes, it is the �rst symbol that appears in the score. The tree
types are: F (second stave from Figure 4.1), C and G (�rst stave from
Figure 4.1).

Key signature: Set of sharp or �at symbols placed after the cle�, it
determines the notes that will be altered from their natural pitch during
the score or till a new Key is written. A sharp raises one semitone the
natural note, while the �at lowers it.

Time signature: It determines how many beats are contained in each
bar. It appears next to the key signature. As we can see in the example
of Figure 4.6, the 2/4 time signature means that there are two crotchets
or quarter notes per compass.

4.2. Input data

In order to use a neural network, it is needed to convert the music scores
to readable data, so we need to choose the appropriate data representation.
To get started, it is important to clarify the basic musical notation, shown
in Figure 4.2.

Figure 4.2: Notes with di�erent pitches

The available data is represented in several formats, such as pfd, mp3,
mp4, wav or midi. Obtaining the musical data from a pdf complicates the
project, as we would need an image processing program to read every page,
so it was discarded. Mp3, mp4 or wav formats were studied, although as
they only store sounds, extracting more concrete information from them is
more di�cult than obtaining it from a midi �le. This last format was also
chosen due to the simplicity that music21 (section 3.4.5.2) gives us to process
them.

30

4.2. Input data

4.2.1. MIDI

Musical Instrument Digital Interface (MIDI), is a format made to connect
computers and musical instruments. A note is understood as an event with
a note_on message, and each event carries information such as if the note
is playing or not, volume, pitch, velocity and the note number, explained in
Table 4.1.

Octave Note Numbers
C C# D D# E F F# G G# A A# B

-1 0 1 2 3 4 5 6 7 8 9 10 11
0 12 13 14 15 16 17 18 19 20 21 22 23
1 24 25 26 27 28 29 30 31 32 33 34 35
2 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59
4 60 61 62 63 64 65 66 67 68 69 70 71
5 72 73 74 75 76 77 78 79 80 81 82 83
6 84 85 86 87 88 89 90 91 92 93 94 95
7 96 97 98 99 100 101 102 103 104 105 106 107
8 108 109 110 111 112 113 114 115 116 117 118 119
9 120 121 122 123 124 125 126 127

Table 4.1: Midi notes table

Let's compare the most popular Beethoven motive from the Fifth Sym-
phony, shown in Figure 4.3, with its correspondent MIDI �le, whose �rst
lines are shown in Table 4.2.

Figure 4.3: Beethoven's Fifth symphony score snippet

The �rst number speci�es the time position of the event, the �note_on_c�
label means that the note has to be played with the following characteristics,
the 11 is the channel number, always an integer between 0 and 15, the next
number is the note number [0 - 127] (it can be checked in Table 4.1), and
�nally, the last number means the velocity in which the note has to be played
[0 - 127]. If the velocity is 0, it means that the note stopped playing, which
could be also represented with the �note_o�_c� label.

Firstly, as MIDI (.mid) �les were popular in this research �eld, we used
them as an input for our system, as it is a data �le which contains information
about the sounds: which note is played, when and how long or loud. As MIDI
�les store sound information, it does not di�erentiate between all the string

31

Chapter 4. Deep Learning approach for music generation

480 Note_on_c 11 67 108

512 Note_on_c 11 67 0

576 Note_on_c 11 67 106

608 Note_on_c 11 67 0

672 Note_on_c 11 67 106

704 Note_on_c 11 67 0

768 Note_on_c 11 63 105

1104 Note_on_c 11 63 0

1248 Note_on_c 11 65 103

1280 Note_on_c 11 65 0

1344 Note_on_c 11 65 113

1376 Note_on_c 11 65 0

1440 Note_on_c 11 65 106

1472 Note_on_c 11 65 0

1536 Note_on_c 11 62 105

2256 Note_on_c 11 62 0

Table 4.2: MIDI information

Figure 4.4: Music21 .mid �les parsing

instruments in an orchestra, since their pitches are really similar, as it can
be seen in Figure 4.4. That supposed a problem in the development of this
project, since it prevented us for reaching our goal. Without being able to
distinguish between string instruments, we would be loosing a big quantity
of data. At this point, we converted all the input data to a MXL format,
format that can be also processed by the previously chosen library music21
using musescore.

Figure 4.5: Final system's input and outputs formats

32

4.2. Input data

4.2.2. MusicXML

As explained in Section 1.2, this project's aim is to obtain all the di�erent
scores for every orchestra instrument, the input �les format were changed
to MXL. This extension refers to a compressed music score, which Music21
easily reads and processes. MXL �les are the compressed format of the
so called MusicXML, which is the standard XML format, although both
extensions represent the same information. XML's �le extension is used
to store data in a legible way, by establishing several labels. For instance,
in contrast with the MIDI format, the following information for Beethoven's
Fifth symphony snippet represented in Figure 4.3 is stored. The key (Listing
4.1), the time signature (Listing 4.2) or the clef (Listing 4.3) is saved for each
instrument in the score.

Listing 4.1: Key represented in XML

<key>
<f i f t h s> −3 </ f i f t h s>

</key>

Listing 4.2: Time signature represented in XML

<time>
<beats> 2 </beats>
<beat−type> 4 </beat−type>

</time>

Listing 4.3: Clef type represented in XML

<c l e f>
<s ign> G </ s i gn>
<l i n e> 2 </ l i n e>

</ c l e f>

Music21 allows us to generate the �nal output in any desired format, so
we can obtain it in MIDI and XML, as it can be seen represented in Figure
4.5. After getting those �les, Musescore can open both formats so the score
can be visualized and played.

4.2.3. HDF5

The training process explained in section 4.3.2 generates a �le with hdf5
extension, which stands for Hierarchical Data Format version 5, commonly
used to store big quantities of data. It represents the weights of the di�erent
data possibilities. After training the system and generating this �le, the
prediction can easily load the hdf5 data into the model, so it has all the
needed information to assign weights representing the possibility to appear
to each data.

33

Chapter 4. Deep Learning approach for music generation

4.3. Music generation

Following the project's goal, explained in section 1.2, we intend to obtain
a music piece based on Beethoven's symphonies, so we can imagine how the
10th Symphony would have sounded like. The output is intended to be
fully dependent of the system input, although the only characteristic that
we have forced is the symphony's tempo and the key, as the sheets found in
Beethoven's house after his death had 3 �ats, and the tempo was a 6/8. He
chose to write a large portion of his compositions in this key, as it is said
that it represents a �stormy and heroic tonality�, and it is used in works of
unusual intensity, such as the Fifth Symphony (Figure 4.6).

Figure 4.6: Snippet of Beethoven's Fifth Symphony in C minor

This project is divided in several phases. Firstly we need to extract
a speci�c data from the scores. All the Beethoven symphonies have been
converted to an mxl �le using musescore, by loading the MIDI �le of the
representation of the symphonies obtained from the public repository from
the Beethoven's museum in Bonn 1 and then exporting it to the desired
format, in this case mxl, which constitutes the dataset that we have used to
obtain the desired results, as explained in section 4.2.2.

After obtaining all the information and store it in a structured way, the
second step is the Neural Network training. This way the system can learn
from the given information, detailed in section 4.3.2. Finally the music
prediction is explained in section 4.3.3, which generates the corresponding
MusicXML and MIDI �le as �nal output, both formats can be opened by
musescore, as represented in Figure 4.5.

Three di�erent approaches have been established in order to obtain the
expected result, which is the new Beethoven's 10th Symphony. We have also
explored the data mining from the scores, as each approach uses slightly
di�erent information as input, since during the development of the project
we have discovered new needs or lacks of information for some tasks.

In the following sections we will explain the LSTM Network design, as
we have used several layer combinations in order to reach the best solution.
Then we will elaborate on the training and prediction process. Also, we will
deeply explain each approach with the purpose of comparing them and study
the evolution of their input datasets and the results obtained with each of
them and the reason why we implement each approach's changes. All the

1https://da.beethoven.de/sixcms/detail.php?id=15241&template=untergruppe_

digitales_archiv_en&_eid=1510&_ug=Symphonies&_mid=Works

34

https://da.beethoven.de/sixcms/detail.php?id=15241&template=untergruppe_digitales_archiv_en&_eid=1510&_ug=Symphonies&_mid=Works
https://da.beethoven.de/sixcms/detail.php?id=15241&template=untergruppe_digitales_archiv_en&_eid=1510&_ug=Symphonies&_mid=Works

4.3. Music generation

Figure 4.7: Snippet of Beethoven's Fifth Symphony in C minor

mp3 results are available in a Github repository 2. We will explain the
datasets obtained in each approach with the example shown in Figure 4.7,
which represents the �fth �rst compasses of Beethoven's Fifth symphony.

2https://github.com/paulamlago/Generated_Music

35

https://github.com/paulamlago/Generated_Music

Chapter 4. Deep Learning approach for music generation

4.3.1. LSTM Network design

The model that composes the neutral network is made-up by several
layers, which constitutes an independent network whose basic units are the
neurons, although each layer communicates with each others. This project's
model follows a stacked LSTM architecture (see section 3.4.4) as the one
represented in Figure 4.8, since the larger the depth, the less neurons per
layer the network needs, and it is faster (Graves et al., 2013a). There is no
formula established to determine how many layers the network should have,
and how many neurons would work better for each layer, so one of the tasks
during the development of this project has been to obtain that information
empirically.

Figure 4.8: Model, being N the number of di�erent tuples of information

The �rst model, represented in Figure 4.8, is composed by 3 di�erent
types of layers: LSTM, Dropout and Dense. The most relevant ones are the
LSTM layers, which take the input sequences and return new ones. Then,
the Dropout layers prevent over�tting, ignoring randomly selected neurons
during the training, setting those inputs to 0. This layer has been set to
30% as several public projects on this �eld uses that value (Skúli, 2017).
The Dense (Density) layer serves as a full connection mechanism. This layer
is the last one, so the system returns the same number of outputs as the
di�erent numbers of tuples (note name, note duration) the input data had.
Finally, the activation function used for every layer is set, determining how
each node's output is represented. In this case, a linear activation is used,
allowing the output to be interpreted as a probability between 0 and 1.

In order to compare results during the development of the project, several
models have been tried from the �rst model, represented in Figure 4.8. The
second one (Figure 4.9) constitutes a small modi�cation by erasing the 256
nodes dense layer and the drop out layer that comes after it.

36

4.3. Music generation

Figure 4.9: Second model, being N the number of di�erent tuples of infor-
mation

In this project, since it is all about creativity, we do not have the �nal
validation step on a not trained group of data, present in the majority of
machine learning problems, due to the nonexistence of a correct solution.
Instead, a validation by an expert has been carried out.

4.3.2. Training the Neural Network

The �rst step when starting the training process is to read the input data
and convert it into a understandable format for the neural network. As it
is represented with tuples or lists, we need to create a dictionary to convert
from each data to a number, so the neural network can work with it. This
dictionary has the data as key and a unique number as value, so its length is
the number of di�erent data in the input. The conversion dictionary obtained
from working whit the score present in Figure 4.10 will be the represented
in Table 4.3.

Figure 4.10: Violin's Ode To Joy snippet

As a result of reading the data and convert it with the previous dictionary
in Table 4.3, the input data in a number representation would have the form
showed in Table 4.4.

37

Chapter 4. Deep Learning approach for music generation

Tuple Conversion
(E, quarter) 0
(F, quarter) 1
(G, quarter) 2
(D, quarter) 3
(C, quarter) 4

(E, dotted quarter) 5
(D, quaver) 6
(D, half) 7

Table 4.3: Conversion matrix from data to number

0 0 1 2 2 1 0 3 4 4 3 0 5 6 7

Table 4.4: Final violin's Ode to Joy number representation

Finally, we can generate the network input and output data. By estab-
lishing a certain sequence length, the output for each input sequence will
be the �rst note that comes after the notes sequence in the input. This se-
quence length will be remembered by the Neural Network, as a pattern. It
is important to take into account that in case of establishing a big sequence
length, the network may generalize, while setting a small sequence length,
the system may over learn.

For example, setting a sequence length equal to two, the �rst stages of
the system's work �ow for the Figure 4.10 input would be the shown in Table
4.5, which may lead to an overlearn problem, as the length is really small
and there are many di�erent and concrete cases.

sequence_in sequence_out
[0, 0] [1]
[0, 1] [2]
[1, 2] [2]
[2, 2] [1]
[2, 1] [0]
[1, 0] [3]
[0, 3] [4]
[3, 4] [4]

Table 4.5: First compasses extraction of input and output sequences with
sequence length = 2

To solve that problem, we set the length to a greater number, such as
four, as the compass in this case is a 4/4. The �rst compasses input and
output sequences for that sequence length can be studied in Table 4.6.

38

4.3. Music generation

sequence_in sequence_out
[0, 0, 1, 2] [2]
[0, 1, 2, 2] [1]
[1, 2, 2, 1] [0]
[2, 2, 1, 0] [3]
[2, 1, 0, 3] [4]
[1, 0, 3, 4] [4]
[0, 3, 4, 4] [3]
[3, 4, 4, 3] [0]

Table 4.6: First compasses extraction of input and output sequences with
sequence length = 4

In case of the input, reshaping into a 3 dimension matrix is needed so it is
compatible with the LSTM layers, using Python's numpy module. The �rst
dimension or shape of the network is the number of di�erent tuples or lists.
In case of the last approach, in the dataset, the second one is the previously
established sequence length and �nally the last dimension is forced to be
1, so it has just one input information per sequence length. After that, the
software normalizes the input into sequential values, from 0 to 1, to work with
a regression model. In case of the output, it is converted into a categorical
model.

Once the model is built and the input and output data are ready, it gets
trained, generating a hdf5 �le containing the weights, or priorities, for the
input notes. A graph summing up the steps followed in the training process
can be seen in Figure 4.11.

Figure 4.11: Training schema

4.3.3. Predicting new music

For this task, the network input is generated again, as in the previous
process (see Table 4.5 or 4.6). Since it needs to work over the same model, it
is created again, with the same parameters, but now, instead of training the

39

Chapter 4. Deep Learning approach for music generation

model, it loads the generated weights (hdf5 �le) from the previous process.
It is important at this point that the network input shapes and the loaded
weights have the same dimensions.

Once the model is ready, the opposite dictionary to which is created in
the training process, seen in Table 4.3 is created to convert from the network
output's number to an observation from the original dataset. If we are trying
to generate a single instrument score, the tuple is composed of (note name,
note duration), while if we want to generate a conductor's score composed
of several instruments, the instrument identi�cation will have to be included
in the tuple.

The prediction starts working after getting the information of the desired
music duration, information that we have to manually give to the system.
Then, a random sequence from the input is used as the starting point of
the new score. As in the training, this sequence has to be reshaped into
a 3 dimension matrix. The �rst dimension corresponds to the number of
sequences, which is always 1, the second to the length of the sequence and
the third, as in the training, is forced to be 1. After that, all the sequence
values are converted into sequential ones (between 0 and 1), so the model
can return a prediction given those input values.

The output of the prediction is an array with a probability for each tuple.
Then, the system sorts the values from the greatest probability to the lowest.
As the system is not working with tonal music, it gives priority to the notes
belonging to the key scale used in the new score, present in Figure 4.12,
but it allows non tonal music to appear in the new score, as we think that
manually erasing sharps and �ats would reduce the system's creativity. In
case of a chord, it checks only the root note, so chords and single notes has
the same probability of appearance.

Once it has the indexes of the most interesting note, the system can work
on the predicted information accessing to the conversion dictionary.

Figure 4.12: Key scale

Some other manually made restrictions is that if the predicted note di�ers
more than one octave from the last one, it is transposed in order to get closer
to the previous one, since it will not be easy to play for a musician. The
transposition process consists in getting the octave in which both notes are

40

4.3. Music generation

located and if the di�erence is more than one, we approximate the new note
to the previous one by reducing or extending its octave. Another change
made at this point is that if the predicted note and the previous one are
rests, the lengths are added. This can only be applied to rests since we
need to have several identical notes following (see Figure 4.7). Finally, it
is checked that chords do not have repeated notes. In that case, only the
unique notes are kept.

After �nishing this manual improvements function, the predicted infor-
mation is added to the pattern, which serves as an input for the next pre-
diction, and it will have to be reshaped again to continue predicting notes
with the new incorporation to the score. The system predicts notes till the
addition of the duration of the notes predicted gets to the desired duration
manually established when starting the prediction process.

Once the system has all the required predicted information (notes, chords,
rests, and all the needed information such as their durations or the instru-
ment that plays them) it is processed and .xml and .mid �les are created
using music21.

A graph summing up the prediction process is shown in Figure 4.14.

4.3.4. First approach: Music generation for individual in-
struments

The �rst approach is based on generating all the di�erent orchestra in-
struments scores individually, as seen in Figure 4.13, by training each in-
strument with a concrete existing set of symphonies. After that, we have
manually joined all the di�erent obtained instrument's scores to study if the
overall symphony was musically valid. Since each instrument was trained
without information of the other instruments, the obtained conductor score
had a lack of coordination between them.

4.3.4.1. Dataset description

This approach's goal is to obtain each instrument's score individually, the
note names and durations are stored in an independent �le, being the di�er-
ent tuples of note names and durations which constitutes the �nal dataset,
and will be the input data to the training. This way after repeating the pro-
cess for all the desired instruments and obtaining all the individual scores,
we can put them together to obtain the orchestra's �nal score.

If we were working with this approach with the aim of generating new
music for Clarinet from the example in Figure 4.7, the data that we would
use is shown in Table 4.7. The �nal dataset is composed of multiple tu-
ples containing note name and note duration, this tuples are sorted by the
appearance order in the score.

41

Chapter 4. Deep Learning approach for music generation

Figure 4.13: Snippet of Beethoven's Seventh Symphony in C minor repre-
senting the �rst approach's way of storing the musical information

{(Rest, 1/8), (A, 1/8), (A, 1/8), (A, 1/8), (F, 2/4),
(Rest, 1/8), (G, 1/8), (G, 1/8), (G, 1/8), (E, 2/4)}

Table 4.7: First approach for clarinet

4.3.4.2. Results

The �rst experiment was to train the system with all the Beethoven's
Fifth Symphony's movements. The output obtained is shown in Figure 4.15.
We established the hypothesis that the output would have some similarities
with the input, and being the most famous symphony, we could distinguish
it easier rather than using any other as input.

It can be seen that di�erent measures showed up, such as quarter, eight,
sixteenth or half notes but also thirty-second notes, and some patterns show
up. For instance, in the �rst two staves a half note appears tied to an eight
and a sixteenth note. However, as we only considered notes, we introduced
the possibility to use rests in the melody, so the next step at this point was to
retrain the system, again with the most famous symphony, but allowing rests
to appear. The results can be seen in Figure 4.16. Again, although a di�erent
score is generated, we can distinguish some patterns in the composition,
marked in green in Figure 4.17.

At this point, the time measure is 4/4 as a �rst approach, although after
discovering that Beethoven's house sketches belonging to the upcoming sym-
phony had measure 6/8, it was set to that one, as explained in Section 1.2.
The last generated score shows consecutive notes being the �rst one really
high and the second one low in comparison with the previous note, having a
di�erence of more than one octave between them. The empirical restrictions
applied during the prediction are implemented at this point after realizing

42

4.3. Music generation

F
ig
u
re

4.
14
:
P
re
d
ic
ti
on

sc
h
em

e

43

Chapter 4. Deep Learning approach for music generation

Figure 4.15: Results from training with the Fifth Symphony

Figure 4.16: Results from training with the Fifth Symphony allowing rests

with the last score all the possible improvements marked with orange squares
in Figure 4.17. The �rst orange square shows consecutive notes that have a
di�erence of more than one octave between them, the second one in the next
compass shows a chord with repeated notes, and �nally the two last orange
squares shows three dotted notes, which is not a common musical notation.
All the experiments from this point include these manual improvements.

Figure 4.17: Patterns and keys to apply manual changes. Green squares
denote the patterns and orange squares the items that highlights the need
of manual improvements

Using the same weights as before, the �rst three staves of the outcoming
score is shown in Figure 4.18. These improvements include reducing the

44

https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th-NoRests.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th-WithRests.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th-WithRests.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th-WithRests.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th-WithRests.mp3

4.3. Music generation

octaves in case two notes di�er more than one, or give preference to show
up to a note belonging to the key scale, as explained in section 4.3.3. The
result di�ers from Figure 4.16, being the new one clearer but maintaining
the motifs, such as the half note tied to two quarter notes, quality that
characterizes Beethoven's Fifth Symphony.

Figure 4.18: Results from training with the Fifth Symphony with manual
improvements

Keeping the system state, we train it with the Seventh symphony, and
generate the violins as before. The �rst three staves of this result can be
seen in Figure 4.19, in which there is not an easy-to-recognize motive such as
in the previous experiments. That may be because this symphony does not
have a clear motive such as the Fifth's. The result looks similar, although
it is remarkable the increment in the number of rests showing in the score.
This may be due to the remarkable amount of silent compasses in the second
movement of this symphony. Violins start playing in compass number 50,
which is not a common characteristic of the violin scores in any symphony,
being usually the instrument playing the main melody.

Figure 4.19: Results from training with the Seventh Symphony with manual
improvements

Now that we have concluded the experiment with the Fifth and Seventh
symphonies, the next step is to train the system with both of them. The

45

https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th-WithRestsAndManualImprovements.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th-WithRestsAndManualImprovements.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-7th.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-7th.mp3

Chapter 4. Deep Learning approach for music generation

output is shown in Figure 4.20. It can be seen that the amount of rest notes is
increased from other results that does not use the Seventh symphony violin's
as input, but the motives present in the output obtained from training with
the Fifth keeps showing. The same happens in Figure 4.21, obtained from
training the Fifth, Seventh and Ninth Symphonies Violins.

Figure 4.20: Results from training with the Fifth and Seventh Symphony

Figure 4.21: Results from training with the Fifth, Seventh and Ninth Sym-
phony

After completing all the experiments previously described, the system
was trained with some of the orchestra's instruments. Figure 4.22 shows the
prediction result for Violin, Violas, Violoncellos, Contrabass, Flutes, Oboes
and Clarinets, training with the Seventh symphony. This result has been
obtained from training each instrument individually and putting them to-
gether manually by joining the XML generated scores for each instrument
with musescore. A lack of coordination between each instrument is distin-
guishable, since each melody has been generated without having knowledge
on any other instrument's voices. That has caused that each musical phrase
from the di�erent instruments does not coordinate with the others to gener-
ate a group sound.

46

https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th%2B7th.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th%2B7th%2B9th.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins-5th%2B7th%2B9th.mp3

4.3. Music generation

Figure 4.22: Results from training separately 7 di�erent instruments with
the Seventh symphony

4.3.4.3. Limitations

After this �rst approximation to the music generation, we conclude that
each instrument should have information about other's instruments while
training. Otherwise the melody would sound incoherent and although maybe
each instrument's music would make sense individually, while putting all of
them together it does not acquire a coherent sound, as the di�erent instru-
ments does not respect each others melodies.

As the goal of this project is to generate a group score, a second approx-
imation is established, now adding more information into the input dataset.

4.3.5. Second approach: Music generation for coordinated
instruments

The second approach was intended to increase the coordination between
each instrument, so we have changed the dataset structure by adding more
information to the tuples so the system is able to train a set of instruments at
the same time from a concrete set of symphonies, as seen in Figure 4.23. This
way, the generated scores present a considerable increment of coordination
and it is easier to di�erentiate each musical phrase.

47

https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins%2CViolas%2CVioloncellos%2CContrabasses%2CFlute%2COboe%2CClarinet-7th.mp3
https://github.com/paulamlago/Generated_Music/blob/master/First%20approach/Violins%2CViolas%2CVioloncellos%2CContrabasses%2CFlute%2COboe%2CClarinet-7th.mp3

Chapter 4. Deep Learning approach for music generation

Figure 4.23: Snippet of Beethoven's Seventh Symphony in C minor repre-
senting the second approach's way of storing the musical information

4.3.5.1. Dataset description

The second approach trains with the chosen instruments at the same
time, so we need to store, besides the note name and duration, the o�set
and instrument that plays it. The o�set will be used to sort the data, but
after making sure that the events are sorted as they are in the original
score, it can be removed from the dataset. This way, the training data will
be composed of the di�erent tuples of note names, note durations and the
instrument that plays it.

The input data for Clarinets would be the represented in Table 4.8. It can
be appreciated all the di�erent tuples containing the note name, duration,
o�set where it is located and the instrument name. As it can be seen, the
data is sorted by o�set, as the information has been obtained in that order.

{(Rest, 1/8, 0.125, Clarinet), (A, 1/8, 0.25, Clarinet),
(A, 1/8, 0.375, Clarinet), (A, 1/8, 0.5, Clarinet),
(F, 2/4, 1, Clarinet), (Rest, 1/8, 1.125, Clarinet),
(G, 1/8, 1.25, Clarinet), (G, 1/8, 1.375, Clarinet),
(G, 1/8, 1.5,Clarinet), (E, 2/4, 1.625, Clarinet)}

Table 4.8: Second approach for clarinet

Let's see an example where we train the system with the Clarinets and
Violoncellos, using the same approach. Firstly, the system will obtain the
tuples as it can be seen in Table 4.9.

After that, the system will sort them by o�set as shown in Table 4.10.

Later, as the o�set is not necessary any more, it was ment to be used
to order the events, it can be removed from each tuple. The �nal dataset is
shown in Table 4.11.

48

4.3. Music generation

{(Rest, 1/8, 0.125, Clarinet), (A, 1/8, 0.25, Clarinet),
(A, 1/8, 0.375, Clarinet), (A, 1/8, 0.5, Clarinet),
(F, 2/4, 1, Clarinet), (Rest, 1/8, 1.125, Clarinet),
(G, 1/8, 1.25, Clarinet), (G, 1/8, 1.375, Clarinet),
(G, 1/8, 1.5,Clarinet), (E, 2/4, 1.625, Clarinet),
(Rest, 1/8, 0.125, Violoncello), (G, 1/8, 0.25, Violoncello),
(G, 1/8, 0.375, Violoncello), (G, 1/8, 0.5, Violoncello),
(E, 2/4, 1, Violoncello), (Rest, 1/8, 1.125, Violoncello),
(F, 1/8, 1.25, Violoncello), (F, 1/8, 1.375, Violoncello),
(F, 1/8, 1.5�Violoncello), (D, 2/4, 1.625, Violoncello)}

Table 4.9: Second approach for clarinet and violoncello

{(Rest, 1/8, 0.125, Clarinet), (Rest, 1/8, 0.125, Violoncello),
(A, 1/8, 0.25, Clarinet), (G, 1/8, 0.25, Violoncello),
(A, 1/8, 0.375, Clarinet), (G, 1/8, 0.375, Violoncello),
(A, 1/8, 0.5, Clarinet), (G, 1/8, 0.5, Violoncello),
(F, 2/4, 1, Clarinet), (E, 2/4, 1, Violoncello),
(Rest, 1/8, 1.125, Clarinet), (Rest, 1/8, 1.125, Violoncello),
(G, 1/8, 1.25, Clarinet), (F, 1/8, 1.25, Violoncello),
(G, 1/8, 1.375, Clarinet), (F, 1/8, 1.375, Violoncello),
(G, 1/8, 1.5, Clarinet), (F, 1/8, 1.5, Violoncello),
(E, 2/4, 1.625, Clarinet), (D, 2/4, 1.625, Violoncello)}

Table 4.10: Second approach for clarinet and violoncello sorted by o�set

4.3.5.2. Results

To avoid the musical disorder obtained in the previous result, this second
approach was used. As explained before, in this case the system is trained
with a set of desired instruments, getting this way scores such as the one
shown in Figure 4.24, a duo for Flute and Violin. This result shows how
each instrument compliments the others, having the violin the main melody
at the beginning, but respecting the Flute's main appearance in compasses
seventh and eight.

In the second experiment we tried to increment the coordination com-
plexity by training with one more instrument. The same behavior can be
seen in the score in Figure 4.25, which shows how Violins, Violas and Vi-
oloncellos, while being trained only with the Seventh symphony, assumes a
trio music by respecting the other instrument's melodies and complementing
each other. Di�erences between this score and the one belonging to the �rst
approach, shown in Figure 4.22, can be appreciated. In that case, in order
to compare them, the corresponding Violin, Viola and Violoncello staves are
the �rst, second and third. As it can be seen, the coherence of the di�er-

49

Chapter 4. Deep Learning approach for music generation

{(Rest, 1/8, Clarinet), (Rest, 1/8, Violoncello),
(A, 1/8, Clarinet), (G, 1/8, Violoncello),
(A, 1/8, Clarinet), (G, 1/8, Violoncello),
(A, 1/8, Clarinet), (G, 1/8, Violoncello),
(F, 2/4, Clarinet), (E, 2/4, Violoncello),
(Rest, 1/8, Clarinet), (Rest, 1/8, Violoncello),
(G, 1/8, Clarinet), (F, 1/8, Violoncello),
(G, 1/8, Clarinet), (F, 1/8, Violoncello),
(G, 1/8, Clarinet), (F, 1/8, Violoncello),
(E, 2/4, Clarinet), (D, 2/4, Violoncello)}

Table 4.11: Final dataset: Second approach for clarinet and violoncello

Figure 4.24: Second approach trained with the Seventh symphony for Flutes
and Violins

ent instruments is enhanced in the second approach. Nevertheless, we can
observe a lack of information in the experiment seen in Figure 4.25, as the
Violas stave appears with F clef, while this instrument, as shows the result
in the previous experiment (Figure 4.24), uses C clef.

After discovering that using the same approach in two cases we obtain
di�erent results in constant items such as the clef, we started to deeply
explore into de data to �nd out where this disinformation came from, which
�nally lead into a homogenization plan and a new approach.

4.3.5.3. Limitations

In this approximation, the increment of the data and the lack of clear-
ness in it lead to a decompensation in the results. Regardless the need of
cleaning the data an homogenize it before training, the results showed more
coordination between all the di�erent parts of the orchestra.

50

https://github.com/paulamlago/Generated_Music/blob/master/Second%20approach/Flute%2CViolins.mp3
https://github.com/paulamlago/Generated_Music/blob/master/Second%20approach/Flute%2CViolins.mp3

4.3. Music generation

Figure 4.25: Score obtained from training Violins, Violas and Violoncellos
with the Seventh symphony

4.3.6. Third approach: Music generation for coordinated in-
struments with data homogenization

After exploring in detail the input data that we were giving to the system,
we found out that it needed some homogenization. The most relevant change
is the storage of the Violin's information, as Beethoven's symphonies are
composed for two Violin's groups, Violin I and Violin II, music21 read both
as "Violin", without the possibility of distinguishing. As the aim of the
project is to generate the orchestra score, and this musical group always
have two violin voices as minimum, we forced the di�erentiation, which had
to be made by exploring the data and manually change the �rst violin data
by "Violin I", and the second by "Violin II". Previous aproaches did not
distinguish between both voices, and the generated violins scores constituted
a prediction on the Violins I and Violins II scores together.

In this approach a new way of extracting the data from the scores was
proposed, so the data was obtained vertically, as it is shown in Figure 4.26
in which each o�set is represented by a vertical rectangle, creating lists of
tuples storing the information of each instrument for every o�set.

The changes made after the homogenization and the new way of extract-
ing the information from the scores constitutes the third approach.

51

https://github.com/paulamlago/Generated_Music/blob/master/Second%20approach/Violins%2CViolas%2CVioloncellos.mp3
https://github.com/paulamlago/Generated_Music/blob/master/Second%20approach/Violins%2CViolas%2CVioloncellos.mp3

Chapter 4. Deep Learning approach for music generation

Figure 4.26: Snippet of Beethoven's Seventh Symphony in C minor repre-
senting the third approach's way of storing the musical information

4.3.6.1. Dataset description

The last proposed experiment consists on reading all the instruments by
o�set. That could be visually understood by reading the score vertically,
storing all the tuples in a list which belongs to the value of a dictionary,
whose key is the o�set.

If we want to generate a score for Clarinet, Violins and Violoncello, again
based on Figure 4.7, the input would be the shown in Table 4.12. It can be
seen that lists of tuples belonging to each instrument are stored ordered by
o�set.

After some weeks of research another problem showed up while training
with several symphonies, since the generated note durations were imprecise.
We found out that, as in Figure 4.7 the half note played in o�set 1 and 2, in
this case has duration 2/4, since the compass in this Symphony is 2/4, and
that note occupies the whole compass. Nevertheless not all the symphonies
are written in a binary subdivision of the compass, or even each movement
have a di�erent compass de�ned. For example a half note in a 6/8 compass,
which has a ternary subdivision, would be stored with a duration of 4/6.
This leads to the conclusion that in case of binary or ternary subdivision,
which are the most common, the notes will not be represented in the same
way. A general representation has been found by storing the name of the
note, rather than its numerical duration, as it can be seen in Table 4.13.

As we forced the new symphony key to have 3 �ats, there are some music
combinations used in other symphonies that generates a correct harmony for
the key in which they are written, but maybe not the C minor key that we
are setting. To solve that, we implement a new manual change in which
every note is transposed from its key to the C minor key, to maintain the
melody but generate a correct harmony for our tonality.

52

4.3. Music generation

0.125 >>[(Rest, 1/8, Clarinet), (Rest, 1/8, Violin I),
(Rest, 1/8, Violin II), (Rest, 1/8, Violoncello)]
0.25 >>[(A, 1/8, Clarinet), (G, 1/8, Violin I),
(G, 1/8, Violin II), (G, 1/8, Violoncello)]
0.375 >>[(A, 1/8, Clarinet), (G, 1/8, Violin I),
(G, 1/8, Violin II),(G, 1/8, Violoncello)]
0.5 >>[(A, 1/8, Clarinet), (G, 1/8, Violin I),
(G, 1/8, Violin II),(G, 1/8, Violoncello)]
1 >>[(F, 2/4, Clarinet), (E, 2/4, Violin I),
(E, 2/4, Violin II),(E, 2/4, Violoncello)]
1.125 >>[(Rest, 1/8, Clarinet), (Rest, 1/8, Violin I),
(Rest, 1/8, Violin II), (Rest, 1/8, Violoncello)]
1.25 >>[(G, 1/8, Clarinet), (F, 1/8, Violin I),
(F, 1/8, Violin II),(F, 1/8, Violoncello)]
1.375 >>[(G, 1/8, Clarinet), (F, 1/8, Violin I),
(F, 1/8, Violin II),(F, 1/8, Violoncello)]
1.5 >>[(G, 1/8, Clarinet), (F, 1/8, Violin I),
(F, 1/8, Violin II),(F, 1/8, Violoncello)]
2 >>[(E, 2/4, Clarinet), (D, 2/4, Violin I),
(D, 2/4, Violin II),(D, 2/4, Violoncello)]

Table 4.12: Third approach for clarinet violin and violoncello sorted by o�set

4.3.6.2. Results

This approach arises from the necessity of clarifying the input data, be-
cause studying it we found out that some elements were missing so the
instrument grouping in the last approach was not successful in every case.
The most signi�cant change is the Violin I and Violin II naming. As while
exploring the input data we discovered that music21 was labeling both voices
as "Violin" and both were mixed in the same stave. The second and most
relevant change was to read the information vertically, elaborating lists of
tuples with each instrument's information for each o�set. This change will
be visually distinguishable in this approach's output.

The �rst experiments can be seen in Figures 4.27, trained with the sev-
enth symphony and 4.28, trained with the �fth, seventh and ninth sym-
phonies. After exploring the data and change the violin's names, two di�er-
entiated staves shows up, being the �rst one the corresponding to the �rst
Violins and the second one to Violin II, as in a common conductor's score.
Figure 4.28 highlights the vertical way of extracting the information, as it
can be seen that every instrument is playing the same rhythms in this �rst
two compasses, being the violins, �ute and clarinets the voices playing qua-
vers, while the rest of the group is playing mostly semiquavers, generating a
time subdivision. Nevertheless, at the end of the last compass, it is observed

53

Chapter 4. Deep Learning approach for music generation

0.125 >>[(Rest, quarter, Clarinet), (Rest, quarter, Violin I),
(Rest, quarter, Violin II), (Rest, quarter, Violoncello)]
0.25 >>[(A, quarter, Clarinet), (G, quarter, Violin I),
(G, quarter, Violin II), (G, quarter, Violoncello)]
0.375 >>[(A, quarter, Clarinet), (G, quarter, Violin I),
(G, quarter, Violin II),(G, quarter, Violoncello)]
0.5 >>[(A, quarter, Clarinet), (G,quarter, Violin I),
(G, quarter, Violin II),(G, quarter, Violoncello)]
1 >>[(F, half, Clarinet), (E, half, Violin I),
(E, half, Violin II),(E, half, Violoncello)]
1.125 >>[(Rest, quarter, Clarinet), (Rest, quarter, Violin I),
(Rest, quarter, Violin II), (Rest, quarter, Violoncello)]
1.25 >>[(G, quarter, Clarinet), (F, quarter, Violin I),
(F, quarter, Violin II),(F, quarter, Violoncello)]
1.375 >>[(G, quarter, Clarinet), (F, quarter, Violin I),
(F, quarter, Violin II),(F, quarter, Violoncello)]
1.5 >>[(G, quarter, Clarinet), (F, quarter, Violin I),
(F, quarter, Violin II),(F, quarter, Violoncello)]
2 >>[(E, half, Clarinet), (D, half, Violin I),
(D, half, Violin II),(D, half, Violoncello)]

Table 4.13: Third approach for clarinet violin and violoncello sorted by o�set
with generalized note durations

how Violin I changes the rhythm and starts with the semiquaver subdivision.
These �rsts experiments highlights that this new way of extracting the infor-
mation seems to generate more meaningful and coordinated scores, although
the previously explained clef confusion keeps present. In this case, in the
result represented in Figure 4.28, every instrument assumes a G clef, which
in case of instruments such as Violas and Violoncellos is not correct, while
the result in Figure 4.27 has a deviation in the Viola's clef, as it should be
C instead of G. To �x that, we manually forced the keys for each instrument
to be the original.

The example shown in Figure 4.29 is the one with more similarities to
the input data, as it starts with a four notes motive as the Symphony that
has been used for training (see Figure 4.7).

At this point we explored the possibility of modifying the neural network
model previously used carrying out the �st experiment using the second
model (see Figure 4.9). By using the same Symphony as before as input
data and the same number of epochs and sequence length, the result for
Violin I (�rst stave) and Violin II (second stave) can be seen in Figure 4.30.
In this example, we can also see the small motive in the �rst two compass,
in which the First violin's two notes are repeated.

54

4.3. Music generation

Figure 4.27: Score obtained from training with the Seventh symphony for
Violins, Violas, Violoncellos, Contrabasses, Flute, Oboe and Clarinet

4.3.6.3. Limitations

This last approach results show an increment on the music coordination
between instruments in comparison with last approaches. Also as the data
predicted are "vertical" lists of tuples that has previously appeared on any
symphony, the harmony created in every o�set is correct as it has been
previously used by the compositor. That eliminates the need of elaborating
large musical rules to establish a correct harmony between instruments.

Nevertheless, as this approach generate coordinated notes and melodies,
the biggest limitation is the music expressiveness, as we have only worked
with the notes but not with the dynamics. In the music �les predicted every
instrument plays at the same volume all the time, without the expressiveness
that a musician will contribute to the piece. This last problem is deeply
explained in Chapter 5.

55

https://github.com/paulamlago/Generated_Music/blob/master/Third%20approach/Violin%20I%2CViolin%20II%2CViolas%2CVioloncellos%2CContrabasses%2CFlute%2COboe%2CClarinet-7.mp3
https://github.com/paulamlago/Generated_Music/blob/master/Third%20approach/Violin%20I%2CViolin%20II%2CViolas%2CVioloncellos%2CContrabasses%2CFlute%2COboe%2CClarinet-7.mp3

Chapter 4. Deep Learning approach for music generation

Figure 4.28: Score obtained from training with the Fifth, Seventh and Ninth
symphony for Violins, Violas, Violoncellos, Contrabasses, Flute, Oboe and
Clarinet

Figure 4.29: Score obtained from training Violins with the Fifth symphony

56

https://github.com/paulamlago/Generated_Music/blob/master/Third%20approach/Violin%20I%2CViolin%20II%2CViolas%2CVioloncellos%2CContrabasses%2CFlute%2COboe%2CClarinet-5%2C7%2C9.mid
https://github.com/paulamlago/Generated_Music/blob/master/Third%20approach/Violin%20I%2CViolin%20II%2CViolas%2CVioloncellos%2CContrabasses%2CFlute%2COboe%2CClarinet-5%2C7%2C9.mid
https://github.com/paulamlago/Generated_Music/blob/master/Third%20approach/Violin%20I%2CViolin%20II%2CViolas%2CVioloncellos%2CContrabasses%2CFlute%2COboe%2CClarinet-5%2C7%2C9.mid
https://github.com/paulamlago/Generated_Music/blob/master/Third%20approach/Violin%20I%2CViolin%20II-5th.mid

4.3. Music generation

Figure 4.30: Score obtained from training Violins with the Fifth symphony
using the second model

57

https://github.com/paulamlago/Generated_Music/blob/master/Third%20approach/Violin%20I%2CViolin%20II-5-Model2.mid
https://github.com/paulamlago/Generated_Music/blob/master/Third%20approach/Violin%20I%2CViolin%20II-5-Model2.mid

Chapter 5

Conclusions and Future Work

5.1. Conclusions

This project explores the possibility of generating new music based on
Beethoven's style by a system doted with Arti�cial Intelligence, using LSTM
neural networks, which learn and remember musical phrases of a concrete
length, �nally showing that it is possible to obtain music that imitates this
composer's style for several instruments.

During the speci�cation of the problem that we were facing, we estab-
lished three ways of approximating to the new symphony. The �rst one
was to train and generate separately each instrument scores, and manually
creating the conductor's score. The results obtained were satisfactory for
each single instrument separately, getting to generate music in a recogniz-
able style. However, when joining all the di�erent scores, the sound was not
coordinated and the musical phrases belonging to the di�erent instruments
were not respected by the other voices. We concluded that with this �rst
approach we could generate solo scores, but not group music. The second ap-
proach was intended to solve the main problem that the �rst one presented,
that the instruments were not su�ciently coordinated since each instrument
was trained separately, without any information on the music that the others
were playing, which is crucial in an orchestra. The solution proposed was
to train and generate music belonging to di�erent instruments at the same
time. This way the results obtained were more coordinated and we could see
that each instrument respected each other, having rests or accompanying the
main melody when they did not have the leading voice. Finally, the third
approach intended to elaborate on the coordination an leave no data misun-
derstanding, by distinguishing between the two Violin's voices, for instance.
It presents an improvement in the way of extracting information, generating
lists for each o�set containing information of every instrument.

The results obtained can be seen in Table 5.1, as we have progressively
studied the output generated with the three approaches, by �rst working

59

Chapter 5. Conclusions and Future Work

on the generation of single instruments score, and checking that way if they
were musically correct, to �nally generate a conductor score. The system can
return solo scores, but also duos, trios, quartets and also, an orchestra score,
although we have not get to generate the score trained with all the existing
symphonies, which should be the 10th, since it is needed a big computation
capacity.

The human interpreter is always the source of emotions, so it is remark-
able the lack of dynamics in the generated music, being played all the notes at
the same volume during the whole piece. In this project we have focused on
the notes production and instruments coordination, so the generated scores
do not have notation of the dynamics.

5.2. Future work

Following the problem exposed in the conclusion, the next steps should
be to research in music expressiveness, in order to transmit it to the system,
to obtain music similar to what a human composer would create. An option
to start in this task could be to obtain the score's dynamics, and train
a Deep Learning model with the expressiveness of the work, in order to
generate a template, which would be the equivalent to the composer's way
to capturing his or her feelings. After generating the dynamics, the "most

human" or sentimental part, a system like the one generated for this work
would generate the notes and they would be �tted in the dynamic's template.

Another improvement that could be made to the developed system is
to establish more elaborated musical rules to generate notes. For instance,
taking First violin's melody as the main motive, while generating new instru-
ment notes, it should be taken into account the harmony created between the
notes, so a nice and clear sound is composed. For that purpose, some musical
research about harmony e�ects and how it contributes to the perception of
a musical phrase (Palmer and Krumhansl, 1987) should be considered.

Arti�cial Intelligence generates a big controversy nowadays. The social
awareness and unconcern should be progressively made, by calming down the
latent discussion around Arti�cial Intelligence and the possibility of stealing
human jobs. In case of this project, the most a�ected community are the
music composers, worried of being substituted by machines. This last fact
should be contradicted by clarifying that Arti�cial Intelligence will work as
a tool to enhance their production, contributing with new ideas when the
composer needs it, but, at this point, it will not generate any score without
a composer's help.

60

5.2. Future work

A
p
p
ro
ac
h

In
st
ru
m
en
ts

S
y
m
p
h
on
y
tr
ai
n
ed

D
et
ai
ls

F
ig
u
re

F
ir
st

ap
p
ro
ac
h

V
io
li
n
s

5t
h

W
it
h
ou
t
re
st
s

4.
15

W
it
h
re
st
s

4.
16

W
it
h
m
an
u
al

im
p
ro
ve
m
en
ts

4.
18

7t
h

4.
19

5t
h
+

7t
h

4.
20

5t
h
+

7t
h
+

9t
h

4.
21

V
io
li
n
s,
V
io
la
s,
V
io
lo
n
ce
ll
os
,

C
on
tr
ab
as
s,
F
lu
te
,
O
b
o
e,

A
C
la
ri
n
et

7t
h

4.
22

S
ec
on
d
ap
p
ro
ac
h

V
io
li
n
s,
F
lu
te

7t
h

4.
24

V
io
li
n
s,
V
io
la
s,
V
io
lo
n
ce
ll
os

4.
25

T
h
ir
d
ap
p
ro
ac
h

V
io
li
n
s,
V
io
la
s,
V
io
lo
n
ce
ll
os
,

C
on
tr
ab
as
s,
F
lu
te
,
O
b
o
e,

A
C
la
ri
n
et

7t
h

4.
27

5t
h
+

7t
h
+

9t
h

4.
28

V
io
li
n
s

5t
h

4.
29

M
o
d
el
2

4.
30

T
ab
le
5.
1:

E
x
p
er
im

en
ts

su
m
m
ar
y

61

Chapter 6

Conclusiones y Trabajo Futuro

6.1. Conclusiones

Este proyecto explora la posibilidad de generar nueva música basada
en el estilo de Beethoven con un sistema dotado con Inteligencia Arti�cial,
utilizando redes neuronales LSTM, las cuales aprenden y recuerdan frases
musicales de una longitud concreta, mostrando �nalmente que es posible
obtener música que imita el estilo del compositor para varios instrumentos.

Durante la especi�cación del problema al que nos enfrentamos, establec-
imos tres formas de aproximarnos a la nueva sinfonía. La primera fue en-
trenar y generar la partitura de cada instrumento por separado, para de-
spués unirlas manualmente creando la partitura del director. Los resultados
obtenidos fueron satisfactorios para cada instrumento de forma individual,
consiguiendo generar música en un estilo reconocible. Sin embargo, al unir
cada partitura, el sonido no era coordinado y las frases musicales de los
diferentes instrumentos no eran respetadas por las otras voces. Concluimos
que con este primer acercamiento podemos generar partituras para solista,
pero no para grupos musicales. El segundo acercamiento estaba orientado
a resolver el problema principal que el primero presentó, que los instrumen-
tos no estaban lo su�cientemente coordinados puesto que cada uno había
sido entrenado por separado, sin información de la música que las otras vo-
ces estaban produciendo, lo cual es crucial en una orquesta o en cualquier
agrupación musical. La solución propuesta fue entrenar y generar música
perteneciente a cada instrumento a la vez. De esta forma los resultados
obtenidos fueron más coordinados y pudimos ver cómo cada instrumento re-
spetaba a los otros, teniendo silencios o acompañando la melodía principal.
Finalmente, el objetivo del tercer acercamiento era mejorar la coordinación
y eliminar los malentendidos musicales, por ejemplo distinguiendo las dos
voces de los violines. Este tercer acercamiento presenta una mejora en la
forma de extraer la información, generando listas por cada evento temporal,
conteniendo información de todos los instrumentos.

63

Chapter 6. Conclusiones y Trabajo Futuro

Los resultados obtenidos pueden verse en la Tabla 6.1, puesto que hemos
estudiado los resultados progresivamente con los tres acercamientos, traba-
jando en la generación de instrumentos individuales, comprobando que son
musicalmente correctos, hasta �nalmente generar una partitura de orquesta.

El sistema puede devolver partituras para solista, pero también duos,
trios, cuartetos y música para orquesta, aunque no hemos llegado a generar
una partitura entrenada con todas las sinfonías existentes, la que sería la
décima sinfonía, puesto que se necesita una gran capacidad de computación.

El interprete humano es siempre la fuente de emociones, por lo que es
destacable la falta de expresividad en la música generada, siendo reproduci-
das todas las notas con el mismo volumen durante toda la pieza. En éste
proyecto nos hemos centrado en la producción de notas y la coordinación en-
tre instrumentos, por lo que las partituras generadas no tienen información
de la expresividad.

6.2. Trabajo Futuro

Siguiendo con el problema expuesto en las conclusiones, los próximos
pasos tendrían que ser en la exploración de la expresividad musical, para
transmitirla al sistema y así obtener música similar a lo que un compositor
humano crearía. Una opción para comenzar podría ser obtener la expresivi-
dad de la partitura y entrenar un modelo de aprendizaje profundo con dicha
información, para generar una plantilla, que se correspondería con la forma
del compositor de capturar sus sentimientos. Tras generar la expresividad
de la obra, que es la parte más sentimental o humana, un sistema como el
desarrollado para este proyecto generaría las notas para rellenar la plantilla
previamente obtenida. Otra mejora que podría realizarse al sistema desarrol-
lado en este proyecto sería establecer reglas musicales más elaboradas para
generar notas. Por ejemplo, tomar como referencia la melodía del primer
violín, mientras genera las notas de los instrumentos que la van a acom-
pañar, para así tener en cuenta la armonía generada entre las notas, por lo
que se generaría un sonido más claro y agradable. Para este propósito se de-
berían tener en cuenta investigaciones sobre los efectos de la armonía y cómo
contribuye a la percepción de una frase musical, (Palmer and Krumhansl,
1987).

La Inteligencia Arti�cial genera mucha controversia en la actualidad. La
concienciacion y despreocupación social debería producirse progresivamente,
calmando la discursión latente alrededor de la Inteligencia Arti�cial y la
posibilidad de "terminar con muchos puestos de trabajo". En el caso de este
proyecto, la comunidad más afectada son los compositores musicales. Este
último hecho debería ser rebatido aclarando que la Inteligencia Arti�cial
funcionaría como una herramienta para mejorar su trabajo, pero a día de
hoy no va a generar una partitura sin la ayuda de un compositor humano.

64

6.2. Trabajo Futuro

A
p
p
ro
ac
h

In
st
ru
m
en
ts

S
y
m
p
h
on
y
tr
ai
n
ed

D
et
ai
ls

F
ig
u
re

F
ir
st

ap
p
ro
ac
h

V
io
li
n
s

5t
h

W
it
h
ou
t
re
st
s

4.
15

W
it
h
re
st
s

4.
16

W
it
h
m
an
u
al

im
p
ro
ve
m
en
ts

4.
18

7t
h

4.
19

5t
h
+

7t
h

4.
20

5t
h
+

7t
h
+

9t
h

4.
21

V
io
li
n
s,
V
io
la
s,
V
io
lo
n
ce
ll
os
,

C
on
tr
ab
as
s,
F
lu
te
,
O
b
o
e,

A
C
la
ri
n
et

7t
h

4.
22

S
ec
on
d
ap
p
ro
ac
h

V
io
li
n
s,
F
lu
te

7t
h

4.
24

V
io
li
n
s,
V
io
la
s,
V
io
lo
n
ce
ll
os

4.
25

T
h
ir
d
ap
p
ro
ac
h

V
io
li
n
s,
V
io
la
s,
V
io
lo
n
ce
ll
os
,

C
on
tr
ab
as
s,
F
lu
te
,
O
b
o
e,

A
C
la
ri
n
et

7t
h

4.
27

5t
h
+

7t
h
+

9t
h

4.
28

V
io
li
n
s

5t
h

4.
29

M
o
d
el
2

4.
30

T
ab
le
6.
1:

R
es
u
m
en

d
e
lo
s
ex
p
er
im

en
to
s

65

Appendix A

An approach to Beethoven's

10th Symphony

In the �rst half of the development of the project, we wrote an article
explaining the music generation process that we were following for the com-
putational creativity congress ICCC19. Nevertheless, it was not accepted.

67

An approach to Beethoven’s 10th Symphony

Paula Muñoz Lago1, Gonzalo Méndez1,2
1Facultad de Informtica

2Instituto de Tecnologa del Conocimiento
Universidad Complutense de Madrid

Madrid, España
pmunoz06@ucm.es, gmendez@fdi.ucm.es

Abstract

Luidwig van Beethoven composed his symphonies be-
tween 1799 and 1825, when he was writing his Tenth
symphony. As we dispose of a great amount of data be-
longing to his work, the purpose of this paper is to inves-
tigate the possibility of extracting patterns on his com-
positional model and generate what would have been
his last symphony, the Tenth. A neural network model
has been built based on the Long Short-Therm Mem-
ory (LSTM) neural networks. After training the model,
the generated music has been analyzed by comparing
the input data with the results, and establishing differ-
ences between the generated outputs based on the train-
ing data used to obtain them. The structure of the out-
puts strongly depends on the symphonies used to train
the network, so the music obtained presents character-
istics recognisable as a Beethoven-like style.

Introduction
Music is an art, but also a global language present in every
historical stage. From the prehistory, to Medieval, Baroque
or Classical, each stage has it is own social, politics, and
also artistic characteristics, present in paintings, literature,
and music.

Romantic composer Ludwig van Beethoven wrote his
Symphonies from 1799 to 1825, when he finished the No.
9. Although there’s no constancy of the existence of the
10th Symphony score, there exists some sheets found in
Beethoven’s house after his death that are thought to be part
of the upcoming Symphony. Those sheets are kept in the
museum dedicated to his life in his natal city, Bonn, although
they can be seen online 1. The public manuscript is not easy
to read and understand, so that existing data will not be used
in this paper.

In 1988 Barry Cooper, a musicologist who wrote a book
relating Beethoven’s life (Cooper 2000), built from 50 frag-
ments, the first movement of the Symphony 2. Since it can’t
be proved that those found sketches were intended to be part
of the 10th symphony, Barry Cooper’s work has caused a big
controversy.

A legend arises from this cause, called ”the 10th Sym-
phony curse”. Following Beethoven’s steps, several great

1https://bit.ly/2BKPAOx
2https://bit.ly/2T5KBBH

composers were found death before finishing it is 10th Sym-
phony. This is the case of authors such as Franz Schu-
bert (1797-1828), Anton Bruckner (1824-1896), Antonı́n
Dvořák (1842-1904) or Gustav Mahler (1860-1911). The
last one tried to avoid the curse by not assigning a number to
his ninth Symphony, in order to be able to assign the number
9 to his tenth Symphony. Despite his effort in avoiding the
curse, he was found death while composing the last one.

The goal of this work is to generate music, based on
Beethoven’s compositional model, obtaining all the orches-
tra instrument’s scores. The first approach has been to train
the system with each instrument individually, to generate all
the different scores, and then put them all together in a con-
ductor’s score. In contrast, the second approach has con-
sisted in training the system with information from different
instruments at the same time. The output is intended to be
fully dependent of the system prediction, although the only
characteristic that we have forced is the symphony’s tempo
and the key, as the sheets found in Beethoven’s house after
his death had 3 flats, and the tempo was a 6/8. He chose to
write a large portion of his compositions in this key, as it is
said that it represent a ”stormy and heroic tonality”, and it
is used in works of unusual intensity, such as the Fifth Sym-
phony (Fig. 1).

Figure 1: Snippet of Beethoven’s Fifth Symphony in C mi-
nor

Regarding the C minor key, it was considered appropri-
ate for masonic music to have that key signature, due to the
importance that the number 3 and letter b had in the freema-
sonry. Relevant composers in the history such as Wolfgang
Amadeus Mozart wrote music for masonic use, (Henry and
Massin 2006). Although Beethoven is not documented as a
mason, there are strong grounds for believing in that, since
it is known that several of his compositions were played in
the Masonic Lodge. This information is documented in The
age of Mozart and Beethoven (Pestelli 1984).

Some musical definitions important to fully understand
the paper development are:

• Note: Musical event that describes a sound. It contains
more information apart from the note number, but also
the duration, or the pitch class.

Figure 2: Notes names of the chromatic scale

• Pitch: Property of sounds that allows a frequency scale
ordering, distinguishing between ”higher” or ”lower”
sounds.

• Clef: Musical symbol used to determine the name and
pitch of the written notes, it is the first symbol that appears
in the score. The tree types are: F (second stave from
Figure 2), C and G (first stave from Figure 2).

• Key signature: Set of sharp or flat symbols placed after
the cleff, it determines the notes that will be altered from
their natural pitch. A sharp raises one semitone the natural
note, while the flat lowers it.

• Time signature: It determines how many beats are con-
tained in each bar. It appears next to the key signature. As
we can see in the example of Figure 1, the 2/4 time sig-
nature means that there are two crotchets or quarter notes
per compass.
This paper is structured as follows. Previous work on us-

ing Artificial Intelligence in music generation is exposed in
the State of the art section. After that, the work developed
for this paper is explained in detail, presenting the Deep
Learning technique used, the needed toolkits and how the
data is represented. Then, the Music Generation subsection
is divided in: Dataset description, training and prediction.
The results section is focused on explaining the reason why
the system returns a certain output when trained with a spe-
cific set of symphonies. The conclusions and future work
are described in the last sections.

State of the art
Studied since the latter half of the 20th century, Compu-
tational Creativity can still be considered as a novel field.
There has been relevant experiments on Linguistic creativity,
such as narrative generation (Gervás et al. 2005), getting to
write the lines of a musical called Beyond the fence (Gardner
2016), showed for the first time in London’s Arts Theatre,
but also poems (Montfort et al. 2012) or jokes generation
(Ritchie 2009). Visual Arts creativity has been a recurrent
conversation topic these last months due to the auctioned AI
generated painting, Portrait of Edmond de Belamy (2018),
by the Christie’s art gallery of New York, getting the price of
432.500$, whose algorithm was designed by Obvious3. An-
other relevant work on this field is AARON, (Cohen 1995),

3http://obvious-art.com/index.html

a robot capable of taking a brush with it is robotic arm and
paint. The Painting Fool, (Colton 2012) emulates several
styles.

Music creativity
This Computational Creativity sub-field started in the early
50’s, although the most relevant works are mainly focused
on generating coherent sounds and scores for the human mu-
sicians use. The first used Artificial Intelligence technique
for this purpose was the Markov chains. This model de-
fines the probability for an event to happen based on previ-
ous ones, storing them in a transition matrix. An example of
the application of the Markov Chains is ILLIAC (Hiller and
Isaacson 1958). This machine generated the ILLIAC’s suite,
a string quartet 4. Generated notes were tested by heuris-
tic compositional rules. In case that the rules weren’t vio-
lated, they were kept, otherwise a backtracking process was
followed. This project excluded any emotional or expres-
sive generation, by just focusing on the notes. Later on, a
system called CHORAL, which produced the correspond-
ing harmonization of a given Bach Choral, was developed
creating rules and setting heuristics in a logic-programming
language created by the author for this purpose (Ebcioglu
1990).

In 1989 a new technique was implemented for this pur-
pose, Recurrent Neural Networks. Since that method turned
out to be limited by it is short-term coherence, Long Short
Term Memory (LSTM) neural networks started to be used
for this purpose. This method incorporated the ability to
learn long-term dependencies. Since music is built on
themes and motifs repeating over time, it makes LSTM
networks a reasonable option for computer music creativ-
ity. Melodies generated with LSTM networks in existing
projects have resulted more musically plausible than with
other models, such as Gated Recurrent Unit (GNR) (Nayebi
and Vitelli 2015). The first music generation project that
used neural networks is MUSACT (Bharucha 1992), which
focuses on learning the harmonic model and generates ex-
pectations after listening to a certain chord. Some other
projects that use various of this networks models to generate
new sounds have been developed through the last few years,
using raw audio (Kalingeri and Grandhe 2016). BachBot
(Liang et al. 2017) composes and completes music in the
style of Bach chorales using an LSTM generative model.
They conducted a discrimination test to determine if the gen-
erated music was similar to Bach’s chorales with 2336 par-
ticipants, getting a rate of only a 1% of the people correctly
determining which music was generated with BachBot.

Some other examples of music generation projects are
DeepMusic5, which is integrated in Amazon’s assistant
Alexa as a skill, so it plays AI generated music. Chinese
company Huawei recently published the unfinished part,
third and fourth movements, from Shubert’s symphony No.
8 (Mantilla 2019), which the author left unfinished on pur-
pose. Using neural networks, the system gave to the mu-

4https://www.youtube.com/watch?v=
fojKZ1ymZlo

5https://amzn.to/2DBRwJc

sicians some ideas to continue the music, and then musi-
cian and composer Lucas Cantor worked on them. The final
version has been played on the 4th of February, 2019, in a
unique concert in London.

Currently best-work known on computer music composi-
tion is EMI, (Cope and Mayer 1996). This system has suc-
cessfully emulated Mozart, Brahams, Bach, Rachmaninoff
or Chopin’s music, generating new music 6. It searches a
pattern or signature as Cope’s labeled, in at least two exist-
ing pieces of a concrete compositor. Using one of the artist
scores, it locates the signatures to generate the new music,
and in order to compose the music between signatures, it
uses a rule analyzer. The IAMUS (Quintana et al. 2013),
named this way after the god of music, Apolos’s son in the
ancient Greece, is a computer system created at Universi-
dad de Málaga. It is capable of composing a full score in
8 minutes, using genetic algorithms, whose music has been
played by the London Symphony Orchestra. In this case,
chromosomes including all the notes information are ran-
domly generated, and fitness functions are applied to each
of them. If a note is codified to be played by a violin and
this instrument doesn’t have the possibility to play that note,
it is changed. After generating around 100 scores, a human
composer chooses the best one as the final output.

Another challenging field relating Musical Creativity is
Music Improvisation, since it has more difficulties from a
creative point of view. Using Genetic algorithms, GenJam
(Biles 1994) emulates a Jazz musician in his or her improvi-
sation learning process, while the Continuator (Pachet 2003)
uses a Markov model to generate music in standalone mode,
as continuations of musicians input, or as interactive impro-
visation.

Work description
Technical background
Deep learning: LSTM Networks Included in the field of
Machine Learning, Deep Learning involves the use of neu-
ral networks in the task of providing knowledge to the ma-
chines. There exists several types of neural networks, such
as Deep Neural, Deep Brief and Recurrent Neural Networks
(RNN). In this paper we work with the last ones, since we
need to process sequential data, assuming each event de-
pends on previous ones. The most accurate RNN variant
is LSTM. As proved with Figure 1, we need the memory
that this type of networks own. We have the sequence F - F
- F, a predictor without memory would return another F, al-
though by learning from the notes before, it can extract that
after three equal notes, it is probable that the upcoming note
is two lines below the last one.

Proposed in 1997, those neural networks can learn long-
term dependencies, improving the cells or neurons in the
RNN graph. They have the ability to connect previous
knowledge to a present task. Each cell has a certain mem-
ory, and it decides to store or forget a certain data based on a
given priority, assigned by the algorithm after a certain time
learning and represented as weights.

6https://bit.ly/2DDVKjF

Figure 3: LSTM Neural Network cell

As it can be seen in Figure 3, the top line represents the
flow of the cell state. Also, several layers are shown, such as
the first sigmoid, which takes information from the previous
state and determines if it is useful or not, returning 0 or 1.
As it is shown with the vertical arrow, it directly affects to
the flow of the cell state. The second layer is composed of
another sigmoid, which chooses the data to be updated from
the previous state. The tanh component creates a vector of
candidate values to be added to the state. The combination
of both will be added to the current cell state. The final
sigmoid layer decides which parts of the current state are
more relevant. Those will be sent to a tanh function, which
will convert the state into 1 or -1.

Toolkits
This project has been developed in Python, and the most rel-
evant library used is Music21 7, which allows parsing and
generating scores in different formats. Also, every musical
action and representation that we needed to perform, was
made possible using that library. For the Deep Learning en-
gine we have used Keras 8, simplifying that way the use of
TensorFlow. Finally, in order to manage the score formats,
Musescore 9 brought us the possibility to import and export
the symphonies, so we could see the score and listen to it at
the same time. It has many musical functionalities and it is
an open source program available for every platform.

Data representation Several ways of representing
Beethoven Symphonies scores have been studied for this
paper.

Firstly, as MIDI (.mid) files were popular in this research
field, we used them as an input for our system, as it is a
data file which contains information about the sounds: what

7http://web.mit.edu/music21/
8https://keras.io/
9https://musescore.com/

Figure 4: Music21 .mid files parsing

note is played, when and how long or loud. As MIDI files
store sound information, it doesn’t differentiate between all
the string instruments in an orchestra, since their pitches are
really similar, as it can be seen in Figure 4.

Since the main goal of this paper is to obtain all the differ-
ent scores for every orchestra instrument, the input files for-
mat were changed to MXL. This extension refers to a com-
pressed music score, which Music21 easily processes. MXL
files are the compressed format of the so called MusicXML,
which is the standard XML format. Music21 allows us to
generate the final output in any desired format, so we can
obtain it in MIDI and XML. After getting those files, Mus-
escore can open both formats so the score can be visualized
and played.

In order to represent the output of the training, i.e. the
weights of the different notes and durations, the model also
returns an HDF5 file, Hierarchical Data Format version 5,
commonly used to store big quantities of data.

Music Generation
In this paper, we have established two different approaches
in order to obtain the expected result, which is the new
Beethoven’s Tenth Symphony. The first approach is based
on generating all the different orchestra instruments scores
individually. By training each instrument with a concrete
existing set of symphonies, we have obtained each score.
After that, we have manually joined all the different scores
to study if the overall symphony was musically valid. Since
each instrument was trained without information of the other
instruments, the obtained conductor score had a lack of co-
ordination between them.

The second approach was intended to increase the coor-
dination between each instrument, so we have trained a set
of instruments at the same time from a concrete set of sym-
phonies. This way, the generated scores present a consider-
able increment of coordination and it is easier to differentiate
each musical phrase.

Dataset description All the Beethoven symphonies have
been converted to an mxl file, which constitutes the dataset
that we have used to obtain the desired results. Also, the
instrument or instruments with which the system works has
to be established, so the Python module music21 can divide
the mxl score into all the present instruments, and take only
the choosed ones. Then, in the first approach, where the
goal is to obtain each instrument’s score individually, the
note names and durations are stored in an independent file,
being the different tuples of note names and durations the
training data. The second approach trains with the chosen
instruments at the same time, so we need to store, besides
the note name and duration, the offset and instrument that
plays it. The offset will be used to sort the data, but after
making sure that the events are sorted as they are in the orig-

inal score, it can be removed from the dataset. This way, the
training data will be composed of the different tuples of note
names, note durations and instrument.

At this point, we create a dictionary to convert from each
data tuple to a number, so the neural network can work with
it.

Training Finally, we can generate the network input and
output data. By establishing a certain sequence length, the
output for each input sequence will be the first note that
comes after the notes sequence in the input. It is impor-
tant to take into account that in case of establishing a big
sequence length, the machine may generalize, while setting
a small sequence length, the system may over learn.

Figure 5: Violin’s Ode To Joy snippet

For example, setting a sequence length equal to two, the
first stages of the system’s work flow for the Figure 5 input
would be the shown in Table 1.

sequence in sequence out
[(E, 1), (E, 1)] [(F, 1)]
[(E, 1), (F, 1)] [(G, 1)]
[(F, 1), (G, 1)] [(G, 1)]
[(G, 1), (G, 1)] [(F, 1)]

Table 1: Figure’s 5 sequences

In case of the input, reshaping into a 3 dimension matrix
is needed so it is compatible with the LSTM layers, using
Python’s numpy module. The first dimension or shape of
the network is the number of different patterns obtained in
the last step, the second one is the previously established
sequence length and finally the last dimension is forced to be
1, so it has just one input information per sequence length.
After that, the software normalizes the input into sequential
values, from 0 to 1, to work with a regression model. In case
of the output, it is converted into a categorical model.

The next step is to create the model, which follows a
stacked LSTM architecture, since the larger the depth, the
less neurons per layer the network needs, and it is faster
(Graves, Mohamed, and Hinton 2013). There’s no for-
mula established to determine how many layers the network
should have, and how many neurons would work better for
each layer, so one of the tasks during the development of this
project has been to obtain that information empirically.

The network is composed 3 different types of layers. The
most relevant ones are the LSTM layers, which take the se-
quences and return new ones. Then, the Dropout layers pre-
vent overfitting, ignoring randomly selected neurons during
the training, setting those inputs to 0. The Dense (Density)
layer serves as a full connection mechanism. This layer is
the last one, so the system returns the same number of out-
puts as the different numbers of tuples (note name, note du-
ration) the input data had. Finally, the activation function

Figure 6: Model, being N the number of different tuples
(note name, duration)

used for every layer is set, and it determines how each node’s
output is be represented. In this case, a linear activation
is used, the softmax function, valid for multi-classification
tasks, allowing the output to be interpreted as a probability
between 0 and 1.

In this problem, since it is all about creativity, we do not
have the final validation step on a not trained group of data,
present in the majority of machine learning problems, due to
the nonexistence of a correct solution.

Once the model is built and the input and output data are
ready, it gets trained, generating an .hdf5 file containing the
weights, or priorities, for the input notes.

Prediction For this task, the network input is generated
again, as in the previous process (see Table 1). Since it
needs to work over the same model, it is created again, with
the same parameters, but now, instead of training the model,
it loads the generated weights (hdf5 file) from the previous
process. It is important at this point that the network input
shapes and the loaded weights have the same dimensions.
Once the model is ready, a matrix is created to convert from
the network output to a tuple. If we are trying to gener-
ate a single instrument score, the tuple is composed of (note
name, note duration), while if we want to generate a conduc-
tor’s score composed of several instruments, the instrument
identification will have to be included in the tuple. Then, a
random sequence from the input is extracted and started to
predict a fixed number of notes. As in the training, this ran-
dom sequence has to be reshaped into a 3 dimension matrix.
The first dimension corresponds to the number of sequences,
which is always 1, the second to the length of the sequence
and the third, as in the training, is forced to be 1. After that,
all the sequence values are converted into sequential ones
(between 0 and 1), so the model can return a prediction given
those input values. The output of the prediction is an array
with a probability for each tuple. Then, the system sorts the
values from the greatest probability to the lowest. Once it
has the indexes of the most interesting notes, the system can
work on the given tuples accessing to the conversion ma-
trix. It forces the predicted notes to have a duration greater
or equal to 0.5 (quaver), for the score’s simplicity. Another
important restriction is to give priority to notes that belong
to the key scale used in the new score, present in Figure 7.

Some other restrictions manually made is that if the note

Figure 7: Key scale

with highest prediction differs more than one octave from
the last one, it is transposed in order to get closer to the pre-
vious one, but not modifying the note predicted, since it will
not be easy to play for a musician. Another change made at
this point is that if the predicted note and the previous one
are rests, the lengths are added. This can only be applied to
rests since we need to have several identical notes following
(see Figure 1).

After choosing the most appropriate note, the index of the
selected note is added to the pattern, which serves as an input
for the next prediction.

Once the system has all the required predicted informa-
tion (notes, chords, rests, and all the needed information
such as their durations or the instrument that plays them)
it is processed and .xml and .mid files are created using mu-
sic21.

Results
The system output differs from the information given to the
training, although once with the same trained data, the sys-
tem predicts the same score, which denotes a lack of vari-
ability.

Approach 1: Generating individual instruments
melodies Training with all the Fifth Symphony’s move-
ments, the output obtained is shown in Figure 8.

Figure 8: Results from training with the Fifth Symphony

At this point, the time measure is 4/4 as a first approach,
although after discovering that Beethoven’s house sketches
belonging to the upcoming symphony had measure 6/8, it
was set to that one.

It can be seen that different measures showed up, such as
quarter, eight, sixteenth or half notes but also thirty-second
notes, and a motif shows up. In the first two staves, a half
note appears tied to an eight and a sixteenth note in several
compass. However, there are no rests, so the next step at this
point was to retrain the system, again with the most famous
symphony, but allowing rests to appear. The results can be
seen in Figure 9. Again, although a different score is gener-
ated, we can distinguish some patterns in the composition.

Figure 9: Results from training with the Fifth Symphony
allowing rests

Figure 10: Results from training with the Fifth Symphony
with manual improvements

At this point, the empirical restrictions explained above
during the prediction are implemented, and all the experi-
ments from this point include these manual improvements.
For instance, using the same weights as before, the first three
staves of the outcoming score is shown below in Figure 10.

The result differs from Figure 9, being the new one clearer
but maintaining the motifs, such as the half note tied to two
quarter notes, quality that characterizes Beethoven’s Fifth
Symphony.

Keeping the system state, we train it with the Seventh
symphony, and generate the violins as before. The result
looks similar, although it is remarkable the increment in the
number of rests showing in the score. This may be due to
the amount of silent compasses in the second movement of
this symphony. Violins start playing in compass number 50,
which is not a common characteristic of the violin scores
in any symphony, being usually the instrument playing the
main melody.

Figure 11: Results from training with the Seventh Sym-
phony with manual improvements

Figure 11 shows only the first three staves, in which
there’s not an easy-to-recognize motive such as in the pre-
vious experiments. That may be because this symphony
doesn’t have a clear motive such as the Fifth’s.

Now that we have concluded the experiment with the Fifth

Figure 12: Results from training with the Fifth and Seventh
Symphony

and Seventh symphonies, the next step is to train the system
with both of them. The output is shown in Figure 12.

It can be seen that the amount of rest notes is increased
from other results that doesn’t use the Seventh symphony vi-
olin’s as input, but the motives present in the output obtained
from training with the Fifth keeps showing. The same hap-
pens in Figure 13, obtained from training the Fifth, Seventh
and Ninth Symphonies Violins.

Figure 13: Results from training with the Fifth, Seventh and
Ninth Symphony

Figure 14: Results from training separately 7 different in-
struments with the Seventh symphony

Approach 1: Generating music for several instruments
After completing all the experiments previously described,
the system was trained with some of the orchestra’s instru-
ments. Figure 14 shows the prediction result for Violin, Vi-
olas, Violoncellos, Contrabass, Flutes, Oboes and Clarinets,
training with the Seventh symphony. Although this result
has been obtained from training each instrument individu-

ally and putting them together manually, it is distinguish-
able a lack of coordination between each instrument, since
each melody has been generated without having knowledge
on any other instrument’s melody. That has caused that each
musical phrase from the different instruments doesn’t coor-
dinate with the others to generate a group sound.

Approach 2: Generating several instruments at the same
time To avoid the musical disorder obtained in the previ-
ous results, the second approach was used. As explained
before, in this case the system is trained with a set of desired
instruments, getting this way scores such as the one shown
in Figure 15. This result shows how each instrument com-
pliments the others, having the violin the main melody at
the beginning, but respecting the Flute’s main appearance in
compasses seventh and eight.

Figure 15: Second approach trained with the Seventh sym-
phony for Flutes and Violins

Figure 16: Score obtained from training Violins, Violas and
Violoncellos with the Seventh symphony

The same behavior can be seen in the result shown in
Figure 16, which shows how Violins, Violas and Violoncel-
los, while being trained only with the Seventh symphony,
assumes a trio music by respecting the other instrument’s
melodies and complementing each other. It can be appreci-
ated the differences between this score and the one shown
in Figure 14. In that case, the corresponding lines are the
first, second and third (Violin, Viola and Violoncello). As
it can be seen, the coherence of the different instruments is
enhanced in the second approach.

All the mp3 results are available in Github repository 10.

Conclusions
This paper explores the possibility of generating new mu-
sic based on the Beethoven’s style by a system doted with
Artificial Intelligence, using LSTM neural networks, which
learn and remember musical phrases of a concrete length, fi-
nally showing that it is possible to obtain music that imitates
this composer’s style for several instruments.

During the specification of the problem, we established
two ways of approximating to the new symphony. The first
one was to train and generate separately each instrument
scores, and manually creating the conductor’s score. The
results obtained were satisfactory for each single instrument
separately, getting to generate music in a recognizable style.
However, when joining all the different scores, the sound
was not coordinated and the musical phrases belonging to
the different instruments were not respected by the others.
We concluded that with this first approach we could gener-
ate solo scores, but not group music. The second approach
was intended to solve the main problem that the first one
presented, that the instruments were not sufficiently coor-
dinated since each instrument was trained separately, with-
out any information on the music that the others were play-
ing, which is crucial in an orchestra. The solution proposed
was to train and generate music belonging to different instru-
ments at the same time. This way the results obtained were
more coordinated and we could see that each instrument re-
spected each other, having rests or accompanying the main
melody when they did not have the leading voice.

The amount of results obtained can be seen in Table 2,
as we have progressively studied the output generated with
both approaches, by first working on the generation of sin-
gle instruments score, and checking that way if they were
musically correct, to finally generate a conductor score. The
system can return solo scores, but also duos, trios, quartets
and an orchestra score, although we have not got to generate
the score trained with all the existing symphonies.

The human interpreter is always the source of emotions,
so it is remarkable the lack of dynamics in the generated mu-
sic, being played all the notes at the same volume during the
whole piece. In this paper we have focused in the notes pro-
duction and instruments coordination, so generated scores
have not notation of the dynamics.

Future work
Following the problem exposed in the conclusion, the next
step is to research in music expressiveness, in order to trans-
mit it to the system, to obtain music similar to what a human
composer would create. An option to start in this task could
be to obtain the score’s dynamics, and train a Deep Learn-
ing model with the expressiveness of the work, in order to
generate a template, which would be the equivalent to the
composer’s way to capturing his or her feelings. After gen-
erating the dynamics, the ”most human” or sentimental part,
a system like the one created for this work would generate

10https://bit.ly/2tzuHBb

Approach Instruments Symphony trained Details Figure

First approach Violins

5th
Without rests 8

With rests 9
With rests and manual improvements 10

7th With rests and manual improvements 11
5th + 7th With rests and manual improvements 12

5th + 7th + 9th With rests and manual improvements 13
Violins, Violas, Violoncellos,

Contrabass, Flute, Oboe,
A Clarinet

7th With rests and manual improvements 14

Second approach Violins, Flute 7th With rests and manual improvements 15
Violins, Violas, Violoncellos 7th With rests and manual improvements 16

Table 2: Results

the notes and they would be fitted in the dynamic’s template.
Another improvement that could be made to the developed
system is to establish more elaborated musical rules to gen-
erate notes. For instance, taking First violin’s melody as
the main motive, while generating new instrument notes, it
should be taken into account the harmony created between
the notes, so a nice and clear sound is composed. For that
purpose, some musical research about harmony effects and
how it contributes to the perception of a musical phrase,
(Palmer and Krumhansl 1987), should be considered.

The social awareness and unconcern should be progres-
sively made, by calming down the latent discussion around
Artificial Intelligence and the possibility of stealing human
jobs. In case of this paper, the most affected community
are the music composers, worried of being substituted by
machines. This last fact should be contradicted by clarify-
ing that Artificial Intelligence will work as a tool to enhance
their production, but, at this point, it will not generate any
score without a composer’s help.

References
[Bharucha 1992] Bharucha, J. J. 1992. Musact: A connec-

tionist model of musical harmony. In Machine Models of
Music, 497–509. MIT Press.

[Biles 1994] Biles, J. 1994. Genjam: A genetic algorithm
for generating jazz solos. In International Computer Music
Conference.

[Cohen 1995] Cohen, H. 1995. The further exploits of aaron,
painter. Stanford Hum. Rev. 4(2):141–158.

[Colton 2012] Colton, S. 2012. The painting fool: Stories
from building an automated painter. In Computers and cre-
ativity. Springer. 3–38.

[Cooper 2000] Cooper, B. 2000. Beethoven. Oxford Univer-
sity Press, USA.

[Cope and Mayer 1996] Cope, D., and Mayer, M. J. 1996.
Experiments in musical intelligence, volume 12. AR edi-
tions Madison.

[Ebcioglu 1990] Ebcioglu, K. 1990. An expert system for
harmonizing chorales in the style of j.s. bach. The Journal
of Logic Programming 8(1):145 – 185. Special Issue: Logic
Programming Applications.

[Gardner 2016] Gardner, L. 2016. Beyond the fence review
computer-created show is sweetly bland. The Guardian.

[Gervás et al. 2005] Gervás, P.; Daz-Agudo, B.; Peinado, F.;
and Hervs, R. 2005. Story plot generation based on cbr.
Knowledge-Based Systems 18(4):235 – 242. AI-2004, Cam-
bridge, England, 13th-15th December 2004.

[Graves, Mohamed, and Hinton 2013] Graves, A.; Mo-
hamed, A.; and Hinton, G. E. 2013. Speech recognition
with deep recurrent neural networks. CoRR abs/1303.5778.

[Henry and Massin 2006] Henry, J., and Massin, B. 2006.
Mozart the freemason: the masonic influence on his musical
genius. Inner Traditions.

[Hiller and Isaacson 1958] Hiller, Jr., L. A., and Isaacson,
L. M. 1958. Musical composition with a high-speed dig-
ital computer. J. Audio Eng. Soc 6(3):154–160.

[Kalingeri and Grandhe 2016] Kalingeri, V., and Grandhe,
S. 2016. Music generation with deep learning. CoRR
abs/1612.04928.

[Liang et al. 2017] Liang, F. T.; Gotham, M.; Johnson, M.;
and Shotton, J. 2017. Automatic stylistic composition of
bach chorales with deep lstm. In ISMIR, 449–456.

[Mantilla 2019] Mantilla, J. R. 2019. Um algoritmo com-
pleta a misteriosa sinfonia inacabada de schubert. El Paı́s.

[Montfort et al. 2012] Montfort, N.; Baudoin, P.; Bell, J.;
Bogost, I.; Douglass, J.; Marino, M. C.; Mateas, M.; Reas,
C.; Sample, M.; and Vawter, N. 2012. 10 PRINT CHR
(205.5+ RND (1));: GOTO 10. mit Press.

[Nayebi and Vitelli 2015] Nayebi, A., and Vitelli, M. 2015.
Gruv: algorithmic music generation using recurrent neural
networks. Course CS224D: Deep Learning for Natural Lan-
guage Processing (Stanford).

[Pachet 2003] Pachet, F. 2003. The continuator: Musi-
cal interaction with style. Journal of New Music Research
32(3):333–341.

[Palmer and Krumhansl 1987] Palmer, C., and Krumhansl,
C. L. 1987. Pitch and temporal contributions to musical
phrase perception: Effects of harmony, performance timing,
and familiarity. Perception & Psychophysics 41(6):505–518.

[Pestelli 1984] Pestelli, G. 1984. The age of Mozart and
Beethoven. Cambridge University Press.

[Quintana et al. 2013] Quintana, C. S.; Arcas, F. M.; Molina,
D. A.; Fernández, J. D.; and Vico, F. J. 2013. Melomics: A
case-study of ai in spain. AI Magazine 34(3):99–103.

[Ritchie 2009] Ritchie, G. 2009. Can computers create hu-
mor? AI Magazine 30(3):71.

Bibliography

Y así, del mucho leer y del poco dormir,

se le secó el celebro de manera que vino

a perder el juicio.

Miguel de Cervantes Saavedra

Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Batten-
berg, E., Case, C., Casper, J., Catanzaro, B., Cheng, Q., Chen,
G. et al. Deep speech 2: End-to-end speech recognition in english and
mandarin. In International conference on machine learning , 173�182.
2016.

Bharucha, J. J. Musact: A connectionist model of musical harmony. In
Machine Models of Music, 497�509. MIT Press, 1992.

Biles, J. Genjam: A genetic algorithm for generating jazz solos. In Inter-

national Computer Music Conference. 1994.

Binsted, K. and Ritchie, G. Computational rules for generating punning
riddles. HUMOR-International Journal of Humor Research, Vol. 10(1),
25�76, 1997.

Bishop, C. M. Pattern recognition and machine learning . springer, 2006.

Boden, M. The turing test and artistic creativity. Kybernetes, Vol. 39,
409�413, 2010.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp,
B., Goyal, P., Jackel, L. D., Monfort, M., Muller, U., Zhang,
J. et al. End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316 , 2016.

Breiman, L. Random forests. Machine Learning , Vol. 45(1), 5�32, 2001.
ISSN 1573-0565.

Bressan, G. M., de Azevedo, B. and ElisangelaAp, S. A decision
tree approach for the musical genres classi�cation. Applied Mathematics,
Vol. 11(6), 1703�1713, 2017.

77

BIBLIOGRAPHY

Cho, S.-B. and Won, H.-H. Machine learning in dna microarray analysis
for cancer classi�cation. In Proceedings of the First Asia-Paci�c bioinfor-

matics conference on Bioinformatics 2003-Volume 19 , 189�198. Australian
Computer Society, Inc., 2003.

Cohen, H. The further exploits of aaron, painter. Stanford Humanities

Review , Vol. 4(2), 141�158, 1995.

Collobert, R. and Weston, J. A uni�ed architecture for natural lan-
guage processing: Deep neural networks with multitask learning. In Pro-

ceedings of the 25th international conference on Machine learning , 160�
167. ACM, 2008.

Colton, S. The painting fool: Stories from building an automated painter.
In Computers and creativity , 3�38. Springer, 2012.

Conroy, J. M. and O'leary, D. P. Text summarization via hidden
markov models. In Proceedings of the 24th Annual International ACM SI-

GIR Conference on Research and Development in Information Retrieval ,
SIGIR '01, 406�407. ACM, New York, NY, USA, 2001. ISBN 1-58113-
331-6.

Cooper, B. Beethoven. Oxford University Press, USA, 2000.

Cope, D. and Mayer, M. J. Experiments in musical intelligence, Vol. 12.
AR editions Madison, 1996.

Ebcioglu, K. An expert system for harmonizing chorales in the style of
j.s. bach. The Journal of Logic Programming , Vol. 8(1), 145 � 185, 1990.
ISSN 0743-1066. Special Issue: Logic Programming Applications.

Gardner, L. Beyond the fence review � computer-created show is sweetly
bland. The Guardian, 2016.

Gervás, P., Díaz-Agudo, B., Peinado, F. and Hervás, R. Story plot
generation based on cbr. Knowledge-Based Systems, Vol. 18(4), 235 � 242,
2005. ISSN 0950-7051. AI-2004, Cambridge, England, 13th-15th December
2004.

Gervás, P. Generating poetry from a prose text: Creativity versus faith-
fulness. AISB'01 Symposium on Arti�cial Intelligence and Creativity in

Arts and Science, 2001.

Goodfellow, I., Bengio, Y. and Courville, A. Deep learning . MIT
press, 2016.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A. and Bengio, Y. Generative

78

BIBLIOGRAPHY

adversarial nets. In Advances in neural information processing systems,
2672�2680. 2014.

Graves, A., Mohamed, A. and Hinton, G. E. Speech recognition with
deep recurrent neural networks. CoRR, Vol. abs/1303.5778, 2013a.

Graves, A., Mohamed, A.-r. and Hinton, G. Speech recognition with
deep recurrent neural networks. In 2013 IEEE international conference on

acoustics, speech and signal processing , 6645�6649. IEEE, 2013b.

Hartigan, J. A. andWong, M. A. Algorithm as 136: A k-means cluster-
ing algorithm. Journal of the Royal Statistical Society. Series C (Applied

Statistics), Vol. 28(1), 100�108, 1979. ISSN 00359254, 14679876.

Hiller, L. A. and Isaacson, L. M. Experimental Music; Composition with

an Electronic Computer . Greenwood Publishing Group Inc., Westport,
CT, USA, 1979. ISBN 0313221588.

Hiller, L. A., Jr. and Isaacson, L. M. Musical composition with a high
speed digital computer. Audio Engineering Society Convention 9 , 1957.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural
computation, Vol. 9(8), 1735�1780, 1997.

Jean-Pierre Briot, G. H. and Pachet, F. Deep learning techniques for
music generation - A survey. CoRR, 2017.

Ji, S., Xu, W., Yang, M. and Yu, K. 3d convolutional neural networks
for human action recognition. IEEE transactions on pattern analysis and

machine intelligence, Vol. 35(1), 221�231, 2013.

Jordanous, A. A standardised procedure for evaluating creative systems:
Computational creativity evaluation based on what it is to be creative.
Cognitive Computation, Vol. 4(3), 246�279, 2012. ISSN 1866-9964.

Kaelbling, L. P., Littman, M. L. and Moore, A. W. Reinforcement
learning: A survey. Journal of arti�cial intelligence research, Vol. 4, 237�
285, 1996.

Kalingeri, V. and Grandhe, S. Music generation with deep learning.
CoRR, Vol. abs/1612.04928, 2016.

Kemeny, J. G. and Snell, J. L. Markov Chains. Springer-Verlag, New
York, 1976.

Kononenko, I. Machine learning for medical diagnosis: history, state of
the art and perspective. Arti�cial Intelligence in medicine, Vol. 23(1),
89�109, 2001.

79

BIBLIOGRAPHY

Krogh, A., Larsson, B., Von Heijne, G. and Sonnhammer, E. L. Pre-
dicting transmembrane protein topology with a hidden markov model: ap-
plication to complete genomes. Journal of molecular biology , Vol. 305(3),
567�580, 2001.

Ku, C.-C., Lee, K. Y. and Edwards, R. Improved nuclear reactor temper-
ature control using diagonal recurrent neural networks. IEEE Transactions

on Nuclear Science, Vol. 39(6), 2298�2308, 1992.

Lawrence, S., Giles, C. L., Tsoi, A. C. and Back, A. D. Face recog-
nition: A convolutional neural-network approach. IEEE transactions on

neural networks, Vol. 8(1), 98�113, 1997.

Liang, F. T., Gotham, M., Johnson, M. and Shotton, J. Automatic
stylistic composition of bach chorales with deep lstm. In ISMIR, 449�456.
2017.

Liu, I. and Ramakrishnan, B. Bach in 2014: Music composition with
recurrent neural network. CoRR, Vol. abs/1412.3191, 2014.

de Mántaras, R. L. The next step: Exponential life. Turner, 2017.

Mantilla, J. R. Um algoritmo completa a misteriosa `sinfonia inacabada'
de schubert. El País, 2019.

Montfort, N., Baudoin, P., Bell, J., Bogost, I., Douglass, J.,
Marino, M. C., Mateas, M., Reas, C., Sample, M. and Vawter,
N. 10 PRINT CHR (205.5+ RND (1));: GOTO 10 . mit Press, 2012.

Morales-Manzanares, R., Morales, E. F., Dannenberg, R. and
Berger, J. Sicib: An interactive music composition system using body
movements. Computer Music Journal , 2001.

Nayebi, A. and Vitelli, M. Gruv: algorithmic music generation using
recurrent neural networks. Course CS224D: Deep Learning for Natural

Language Processing (Stanford), 2015.

Nguyen, A. M., Yosinski, J. and Clune, J. Innovation engines: Auto-
mated creativity and improved stochastic optimization via deep learning.
In Proceedings of the 2015 Annual Conference on Genetic and Evolution-

ary Computation, GECCO '15, 959�966. ACM, New York, NY, USA,
2015. ISBN 978-1-4503-3472-3.

Nielsen, M. A. Neural networks and deep learning , Vol. 25. Determination
press San Francisco, CA, USA:, 2015.

Nieuwenhuizen, C. Barry cooper speaks for beethoven 10th symphony.
2001.

80

BIBLIOGRAPHY

Pachet, F. The continuator: Musical interaction with style. Journal of

New Music Research, Vol. 32(3), 333�341, 2003.

Palmer, C. and Krumhansl, C. L. Pitch and temporal contributions to
musical phrase perception: E�ects of harmony, performance timing, and
familiarity. Perception & Psychophysics, Vol. 41(6), 505�518, 1987.

Patel, J., Shah, S., Thakkar, P. andKotecha, K. Predicting stock and
stock price index movement using trend deterministic data preparation
and machine learning techniques. Expert Systems with Applications, Vol.
42(1), 259�268, 2015.

Perozzi, B., Al-Rfou, R. and Skiena, S. Deepwalk: Online learning of
social representations. In Proceedings of the 20th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining , KDD '14,
701�710. ACM, New York, NY, USA, 2014. ISBN 978-1-4503-2956-9.

Pinar Saygin, A., Cicekli, I. and Akman, V. Turing test: 50 years
later. Minds and Machines, Vol. 10(4), 463�518, 2000. ISSN 1572-8641.

Quintana, C. S., Arcas, F. M.,Molina, D. A., Fernández, J. D. and
Vico, F. J. Melomics: A case-study of ai in spain. AI Magazine, Vol.
34(3), 99�103, 2013.

Rabiner, L. R. A tutorial on hidden markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE , Vol. 77(2), 257�286,
1989.

Raschka, S. Python machine learning . Packt Publishing Ltd, 2015.

Reese, G. Music in the Renaissance. WW Norton New York, 1959.

Ritchie, G. Can computers create humor? AI Magazine, Vol. 30(3), 71,
2009.

Rosenblatt, F. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review , Vol. 65(6),
386, 1958.

Seber, G. A. and Lee, A. J. Linear regression analysis, Vol. 329. John
Wiley & Sons, 2012.

Seymore, K., McCallum, A. and Rosenfeld, R. Learning hidden
markov model structure for information extraction. In AAAI-99 work-

shop on machine learning for information extraction, 37�42. 1999.

Skúli, S. How to generate music using a lstm neural network in keras. 2017.

Todd, P. M. and Loy, D. G. Music and connectionism. Mit Press, 1991.

81

BIBLIOGRAPHY

Tracy, M. S. Bach in Beta: Modeling Bach chorales with Markov Chains.
PhD thesis, Harvard University, 2013.

Voyant, C., Notton, G., Kalogirou, S., Nivet, M.-L., Paoli, C.,
Motte, F. and Fouilloy, A. Machine learning methods for solar radi-
ation forecasting: A review. Renewable Energy , Vol. 105, 569�582, 2017.

Wang, L. Support vector machines: theory and applications, Vol. 177.
Springer Science & Business Media, 2005.

White, S. D. and Frenk, C. S. Galaxy formation through hierarchical
clustering. The Astrophysical Journal , Vol. 379, 52�79, 1991.

Wikipedia. Music history. 2019a.

Wikipedia. Music history. 2019b.

Yanchenko, A. Classical Music Composition Using Hidden Markov Mod-

els. PhD thesis, Duke University, 2017.

82

	Página de Título
	Índices
	Tabla de Contenidos
	Índice de figuras
	Índice de tablas

	Introduction
	Motivation
	Project Aim

	Introducción
	Motivación
	Objetivo del proyecto

	State of the art
	Computational Creativity
	Music Creativity

	Markov chains
	Hidden Markov Models

	Machine Learning
	Supervised learning
	Unsupervised learning
	Reinforcement learning

	Deep Learning
	Convolutional Neural Networks (CNNs)
	Generative Adversarial Networks (GANs)
	Recurrent Neural Networks (RNN)
	Long Short Term Memory Networks (LSTM)
	Toolkits

	Conclusions

	Deep Learning approach for music generation
	Musical definitions
	Input data
	MIDI
	MusicXML
	HDF5

	Music generation
	LSTM Network design
	Training the Neural Network
	Predicting new music
	First approach: Music generation for individual instruments
	Second approach: Music generation for coordinated instruments
	Third approach: Music generation for coordinated instruments with data homogenization

	Conclusions and Future Work
	Conclusions
	Future work

	Conclusiones y Trabajo Futuro
	Conclusiones
	Trabajo Futuro

	An approach to Beethoven's 10th Symphony
	Bibliography
	Fin

